Dynamical Systems Related to Fractional Hamiltonians on the Two-Dimensional Sphere
Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 2, pp. 271-284
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a class of “fractional” Hamiltonian systems generalizing the classical problem of motion in a central field. Our analysis is based on transforming an integrable Hamiltonian system with two degrees of freedom on the plane into a dynamical system that is defined on the sphere and inherits the integrals of motion of the original system. We show that in the four-dimensional space of structural parameters, there exists a one-dimensional manifold (containing the case of the planar Kepler problem) along which the closedness of the orbits of all finite motions and the third Kepler law are preserved. Similarly, there exists a one-dimensional manifold (containing the case of the two-dimensional isotropic harmonic oscillator) along which the closedness of the orbits and the isochronism of oscillations are preserved. Any deformation of orbits on these manifolds does not violate the hidden symmetry typical of the two-dimensional isotropic oscillator and the planar Kepler problem. We also consider two-dimensional manifolds on which all systems are characterized by the same rotation number for the orbits of all finite motions.
Keywords: Kepler problem, fractional Hamiltonian systems
Mots-clés : isochronal motion.
@article{TMF_2003_136_2_a6,
     author = {V. M. Eleonskii and V. G. Korolev and N. E. Kulagin},
     title = {Dynamical {Systems} {Related} to {Fractional} {Hamiltonians} on the {Two-Dimensional} {Sphere}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {271--284},
     year = {2003},
     volume = {136},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_136_2_a6/}
}
TY  - JOUR
AU  - V. M. Eleonskii
AU  - V. G. Korolev
AU  - N. E. Kulagin
TI  - Dynamical Systems Related to Fractional Hamiltonians on the Two-Dimensional Sphere
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 271
EP  - 284
VL  - 136
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_136_2_a6/
LA  - ru
ID  - TMF_2003_136_2_a6
ER  - 
%0 Journal Article
%A V. M. Eleonskii
%A V. G. Korolev
%A N. E. Kulagin
%T Dynamical Systems Related to Fractional Hamiltonians on the Two-Dimensional Sphere
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 271-284
%V 136
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2003_136_2_a6/
%G ru
%F TMF_2003_136_2_a6
V. M. Eleonskii; V. G. Korolev; N. E. Kulagin. Dynamical Systems Related to Fractional Hamiltonians on the Two-Dimensional Sphere. Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 2, pp. 271-284. http://geodesic.mathdoc.fr/item/TMF_2003_136_2_a6/

[1] L. D. Landau, E. M. Lifshits, Mekhanika, Nauka, M., 1988 | MR

[2] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR

[3] V. M. Eleonsky, V. G. Korolev, N. E. Kulagin, “The fractal oscillator and the Kepler problem”, Tezisy Mezhdunarodnoi konferentsii “Progress in Nonlinear Science” (Nizhnii Novgorod, 2–6 iyulya 2001 g.), eds. L. M. Lerman, L. P. Shilnikov, Izd-vo Nizhegorodskogo universiteta, Nizhnii Novgorod, 2002, 229–234 | MR

[4] V. M. Eleonskii, V. G. Korolev, N. E. Kulagin, “O zamknutykh orbitakh i izokhronnykh kolebaniyakh v gamiltonovykh sistemakh vida $H=p^{\alpha_1} r^{\beta_1}+\sigma p^{\alpha_2} r^{\beta_2}$”, Tezisy Mezhdunarodnoi konferentsii “Nelineinye zadachi teorii gidrodinamicheskoi ustoichivosti i turbulentnost” (Moskva, 10–17 fevralya 2002 g.), ed. S. Ya. Gertsenshtein, Izd-vo In-ta mekhaniki MGU, M., 2002, 46–49