Point Interaction Between Two Fermions and One Particle of a Different Nature
Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 2, pp. 257-270
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a model of point interaction between two fermions and one particle of a different nature. The model is analogous to the Skornyakov–Ter-Martirosyan model. It is interpreted based on the self-adjoint extension theory for symmetric operators. We show that if the mass of the third particle is sufficiently smaller than the fermion mass, the corresponding energy operator has an infinite set of bound states with the energy values tending to $-\infty$.
Keywords: Hamiltonian, point interaction, symmetric operator, Skornyakov–Ter-Martirosyan extension, self-adjoint solution.
@article{TMF_2003_136_2_a5,
     author = {M. Kh. Shermatov},
     title = {Point {Interaction} {Between} {Two} {Fermions} and {One} {Particle} of a {Different} {Nature}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {257--270},
     year = {2003},
     volume = {136},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_136_2_a5/}
}
TY  - JOUR
AU  - M. Kh. Shermatov
TI  - Point Interaction Between Two Fermions and One Particle of a Different Nature
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 257
EP  - 270
VL  - 136
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_136_2_a5/
LA  - ru
ID  - TMF_2003_136_2_a5
ER  - 
%0 Journal Article
%A M. Kh. Shermatov
%T Point Interaction Between Two Fermions and One Particle of a Different Nature
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 257-270
%V 136
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2003_136_2_a5/
%G ru
%F TMF_2003_136_2_a5
M. Kh. Shermatov. Point Interaction Between Two Fermions and One Particle of a Different Nature. Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 2, pp. 257-270. http://geodesic.mathdoc.fr/item/TMF_2003_136_2_a5/

[1] R. A. Minlos, L. D. Faddeev, DAN SSSR, 141:6 (1961), 1335–1338

[2] R. A. Minlos, L. D. Faddeev, ZhETF, 41:12 (1961), 1850–1851

[3] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966 | MR | Zbl

[4] R. A. Minlos, M. Kh. Shermatov, Vestn. MGU. Ser. 1, 1989, no. 6, 7–14 | MR | Zbl

[5] A. M. Mel'nikov, R. A. Minlos, Adv. Sov. Math., 5 (1991), 99–112 | Zbl

[6] M. Sh. Birman, Matem. sb., 38:4 (1956), 431–450 | MR | Zbl

[7] M. Kh. Shermatov, TMF, 125:1 (2000), 74–91 | DOI | MR

[8] I. M. Gelfand, R. A. Minlos, Z. Ya. Shapiro, Predstavlenie gruppy vraschenii i gruppy Lorentsa, ikh primeneniya, Fizmatgiz, M., 1958 | MR | Zbl

[9] K. Gofman, Banakhovy prostranstva analiticheskikh funktsii, IL, M.–L., 1963