Asymptotics of the Discrete Spectrum of the Three-Particle Schrödinger Difference Operator on a Lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 2, pp. 231-245 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Hamiltonian $H_\mu(K)$ of a system consisting of three bosons that interact through attractive pair contact potentials on a three-dimensional integer lattice. We obtain an asymptotic value for the number $N(K,z)$ of eigenvalues of the operator $H_{\mu_0}(K)$ lying below $z\le0$ with respect to the total quasimomentum $K\to0$ and the spectral parameter $z\to-0$.
Keywords: asymptotics, Schrödinger operator, essential spectrum, discrete spectrum, Hilbert–Schmidt operator.
@article{TMF_2003_136_2_a3,
     author = {Zh. I. Abdullaev and S. N. Lakaev},
     title = {Asymptotics of the {Discrete} {Spectrum} of the {Three-Particle} {Schr\"odinger} {Difference} {Operator} on a {Lattice}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {231--245},
     year = {2003},
     volume = {136},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_136_2_a3/}
}
TY  - JOUR
AU  - Zh. I. Abdullaev
AU  - S. N. Lakaev
TI  - Asymptotics of the Discrete Spectrum of the Three-Particle Schrödinger Difference Operator on a Lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 231
EP  - 245
VL  - 136
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_136_2_a3/
LA  - ru
ID  - TMF_2003_136_2_a3
ER  - 
%0 Journal Article
%A Zh. I. Abdullaev
%A S. N. Lakaev
%T Asymptotics of the Discrete Spectrum of the Three-Particle Schrödinger Difference Operator on a Lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 231-245
%V 136
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2003_136_2_a3/
%G ru
%F TMF_2003_136_2_a3
Zh. I. Abdullaev; S. N. Lakaev. Asymptotics of the Discrete Spectrum of the Three-Particle Schrödinger Difference Operator on a Lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 2, pp. 231-245. http://geodesic.mathdoc.fr/item/TMF_2003_136_2_a3/

[1] V. N. Efimov, YaF, 12:5 (1970), 1080–1091

[2] S. P. Merkurev, L. D. Faddeev, Kvantovaya teoriya rasseyaniya dlya sistem neskolkikh chastits, Nauka, M., 1985 | MR

[3] R. D. Amado, J. V. Noble, Phys. Rev. D, 5:8 (1971), 1992–2002 | DOI

[4] D. R. Yafaev, Matem. sb., 94(136):4(8) (1974), 567–593 | MR | Zbl

[5] Yu. N. Ovchinnikov, I. M. Sigal, Ann. Phys., 123 (1989), 274–295 | DOI | MR

[6] H. Tamura, J. Funct. Anal., 95 (1991), 433–459 | DOI | MR | Zbl

[7] A. V. Sobolev, Commun. Math. Phys., 156 (1993), 101–126 | DOI | MR | Zbl

[8] D. C. Mattis, Rev. Mod. Phys., 58:2 (1986), 361–379 | DOI | MR

[9] V. A. Malyshev, R. A. Minlos, Tr. sem. im. I. G. Petrovskogo, 1983, no. 9, 63–80 | MR | Zbl

[10] A. I. Mogilner, “The problem of a few quasi-particles in solid-state physics”, Applications of Self-Adjoint Extensions in Quantum Physics, Proc. Conf. (Dubna, USSR, 1987), Lect. Notes Phys., 324, eds. P. Exner, P. Seba, Springer, Berlin, 1989, 160–173 | DOI | MR

[11] S. N. Lakaev, Funkts. analiz i ego prilozh., 27:3 (1993), 15–28 | MR | Zbl

[12] S. N. Lakaev, Zh. I. Abdullaev, Matem. zametki, 71:5 (2002), 686–696 | DOI | MR | Zbl

[13] S. Albeverio, R. Hoegh-Krohn, T. T. Wu, Phys. Lett. A, 83 (1971), 105–109 | DOI | MR

[14] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR

[15] S. N. Lakaev, TMF, 89:1 (1991), 94–104 | MR

[16] Zh. I. Abdullaev, S. N. Lakaev, TMF, 111:1 (1997), 94–108 | DOI | MR | Zbl