Quantum Mechanics in Riemannian Space: Different Approaches to Quantization of the Geodesic Motion Compared
Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 2, pp. 209-230
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We compare different approaches to the construction of the quantum mechanics of a particle in the general Riemannian space and space-time via quantization of motion along geodesic lines. We briefly review different quantization formalisms and the difficulties arising in their application to geodesic motion in a Riemannian configuration space. We then consider canonical, semiclassical (Pauli–De Witt), and Feynman (path-integral) formalisms in more detail and compare the quantum Hamiltonians of a particle arising in these models in the case of a static, topological elementary Riemannian configuration space. This allows selecting a unique ordering rule for the coordinate and momentum operators in the canonical formalism and a unique definition of the path integral that eliminates a part of the arbitrariness involved in the construction of the quantum mechanics of a particle in the Riemannian space. We also propose a geometric explanation of another main problem in quantization, the noninvariance of the quantum Hamiltonian and the path integral under configuration space diffeomorphisms.
Keywords: quantum mechanics, Riemannian space, geodesic motion.
Mots-clés : quantization
@article{TMF_2003_136_2_a2,
     author = {\'E. A. Tagirov},
     title = {Quantum {Mechanics} in {Riemannian} {Space:} {Different} {Approaches} to {Quantization} of the {Geodesic} {Motion} {Compared}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {209--230},
     year = {2003},
     volume = {136},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_136_2_a2/}
}
TY  - JOUR
AU  - É. A. Tagirov
TI  - Quantum Mechanics in Riemannian Space: Different Approaches to Quantization of the Geodesic Motion Compared
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 209
EP  - 230
VL  - 136
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_136_2_a2/
LA  - ru
ID  - TMF_2003_136_2_a2
ER  - 
%0 Journal Article
%A É. A. Tagirov
%T Quantum Mechanics in Riemannian Space: Different Approaches to Quantization of the Geodesic Motion Compared
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 209-230
%V 136
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2003_136_2_a2/
%G ru
%F TMF_2003_136_2_a2
É. A. Tagirov. Quantum Mechanics in Riemannian Space: Different Approaches to Quantization of the Geodesic Motion Compared. Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 2, pp. 209-230. http://geodesic.mathdoc.fr/item/TMF_2003_136_2_a2/

[1] C. Rovelli, J. Math. Phys., 41 (2000), 3776 ; E-print hep-th/9910131 | DOI | MR | Zbl

[2] E. A. Tagirov, TMF, 84:3 (1990), 419 | MR | Zbl

[3] E. A. Tagirov, TMF, 90:3 (1992), 412 ; 106:1 (1996), 122 | MR | Zbl | DOI | MR | Zbl

[4] E. A. Tagirov, Class. Q Grav., 16 (1999), 2165 | DOI | MR | Zbl

[5] C. Grosche, G. S. Pogosyan, A. N. Sissakian, EChAYa, 28:5 (1997), 1229 | MR

[6] J. C. D'Olivo, M. Torres, J. Phys. A, 21 (1989), 3355 | DOI | MR

[7] R. Abraham, J. E. Marsden, Foundations of Mechanics, Benjamin/Cummings Publications Co, Reading, MA, 1978 | MR | Zbl

[8] J. 'Sniatycki, Geometric Quantization and Quantum Mechanics, Appl. Math. Sci., 30, Springer, New York–Heidelberg–Berlin, 1980 | DOI | MR | Zbl

[9] W. Pauli, Feldquantisierung. Lecture Notes, Zurich, 1950–1951

[10] B. S. De Witt, Rev. Mod. Phys., 29 (1951), 377 | DOI | MR

[11] F. Bayen et al., Ann. Phys., 111 (1978), 111 | DOI | MR

[12] B. V. Fedosov, J. Diff. Geom., 40 (1994), 213 | DOI | MR | Zbl

[13] M. Bordemann, N. Neumaier, S. Waldmann, Commun. Math. Phys., 198 (1998), 363 | DOI | MR | Zbl

[14] N. Ogawa, K. Fuji, A. Kobushkin, Progr. Theor. Phys., 83 (1990), 894 ; L. V. Prokhorov, “On motion in curved spaces”, Proceedings of the Sixth Int. Conf. on Path Integrals from peV to TeV: 50 Years after Feynman's Paper, eds. R. Casalbuoni et al., World Scientific, Singapore, 1998, 249 | DOI | MR | Zbl | MR

[15] C. Destri, P. Maraner, E. Onofri, Nuovo Cimento A, 107 (1994), 237 | DOI | MR

[16] D. M. Gitman, I. V. Tyutin, Class. Q Grav., 70 (1990), 2131 | DOI | MR

[17] S. P. Gavrilov, D. M. Gitman, Int. J. Mod. Phys. A, 15 (2001), 4499 | DOI | MR

[18] M. V. Karasev, V. P. Maslov, Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991 | MR | Zbl

[19] P. A. M. Dirak, Printsipy kvantovoi mekhaniki, Fizmatgiz, M., 1960 | MR

[20] Dzh. fon Neiman, Matematicheskie osnovy kvantovoi mekhaniki, Nauka, M., 1964 | MR

[21] A. Sadberi, Kvantovaya mekhanika i fizika elementarnykh chastits, Mir, M., 1989

[22] F. A. Berezin, M. A. Shubin, Uravnenie Shredingera, Izdatelstvo MGU, M., 1983 | MR

[23] G. S. Agarwal, E. Wolf, Phys. Rev. D, 2 (1970), 2161 | DOI | MR | Zbl

[24] G. Veil, Teoriya grupp i kvantovaya mekhanika, Fizmatlit, M., 1986 | MR

[25] G. L. Mehta, J. Math. Phys, 5 (1964), 676 | DOI | MR

[26] J. E. Moyal, Proc. Camb. Philos. Soc., 45 (1949), 99 | DOI | MR | Zbl

[27] D. C. Rivier, Phys. Rev., 83 (1957), 862 | DOI

[28] J. H. Van Vleck, Proc. Nat. Acad. Sci. USA, 14 (1928), 178 | DOI | Zbl

[29] R. Penrose, “Conformal treatment of infinity”, Relativity, Groups and Topology, 1963 Summer School. Theor. Univ. Grenoble, ed. B. De Witt, Gordon and Breach, London, 1964, 563 | MR

[30] N. A. Chernikov, E. A. Tagirov, Ann. Inst. H. Poincarè, A9 (1969), 109 | MR

[31] E. A. Tagirov, Ann. Phys., 76 (1973), 561 | DOI

[32] O. Veblen, Invarianty differentsialnykh kvadratichnykh form, IL, M., 1948

[33] M. S. Marinov, J. Math. Phys., 36 (1995), 2458 | DOI | MR | Zbl

[34] D. W. McLaughlin, L. S. Schulman, J. Math. Phys., 12 (1971), 2520 | DOI | MR

[35] Dzh. L. Sing, Obschaya teoriya otnositelnosti, Izd-vo inostr. literatury, M., 1963

[36] D. Kalinin, Rep. Math. Phys., 43 (1999), 147 | DOI | MR | Zbl

[37] C. Rovelli, Int. J. Theor. Phys., 35 (1996), 1637 | DOI | MR | Zbl