The Gravitational Field of an Electrically Charged Mass Point and the Causality Principle in the RTG
Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 2, pp. 324-336

Voir la notice de l'article provenant de la source Math-Net.Ru

We find the effective Riemannian space-time corresponding to the gravitational field generated by a charged mass point in the framework of the relativistic theory of gravity. The causality principle plays an important role in solving this problem. The analytic form and the domain of definition, i.e., the gravitational radius, of the obtained solution differ from the corresponding results in Einstein's general relativity theory.
Keywords: relativistic theory of gravity, gravitational fields, causality principle.
@article{TMF_2003_136_2_a10,
     author = {D. V. Ionescu},
     title = {The {Gravitational} {Field} of an {Electrically} {Charged} {Mass} {Point} and the {Causality} {Principle} in the {RTG}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {324--336},
     publisher = {mathdoc},
     volume = {136},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_136_2_a10/}
}
TY  - JOUR
AU  - D. V. Ionescu
TI  - The Gravitational Field of an Electrically Charged Mass Point and the Causality Principle in the RTG
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 324
EP  - 336
VL  - 136
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_136_2_a10/
LA  - ru
ID  - TMF_2003_136_2_a10
ER  - 
%0 Journal Article
%A D. V. Ionescu
%T The Gravitational Field of an Electrically Charged Mass Point and the Causality Principle in the RTG
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 324-336
%V 136
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2003_136_2_a10/
%G ru
%F TMF_2003_136_2_a10
D. V. Ionescu. The Gravitational Field of an Electrically Charged Mass Point and the Causality Principle in the RTG. Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 2, pp. 324-336. http://geodesic.mathdoc.fr/item/TMF_2003_136_2_a10/