The Gravitational Field of an Electrically Charged Mass Point and the Causality Principle in the RTG
Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 2, pp. 324-336 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We find the effective Riemannian space-time corresponding to the gravitational field generated by a charged mass point in the framework of the relativistic theory of gravity. The causality principle plays an important role in solving this problem. The analytic form and the domain of definition, i.e., the gravitational radius, of the obtained solution differ from the corresponding results in Einstein's general relativity theory.
Keywords: relativistic theory of gravity, gravitational fields, causality principle.
@article{TMF_2003_136_2_a10,
     author = {D. V. Ionescu},
     title = {The {Gravitational} {Field} of an {Electrically} {Charged} {Mass} {Point} and the {Causality} {Principle} in the {RTG}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {324--336},
     year = {2003},
     volume = {136},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_136_2_a10/}
}
TY  - JOUR
AU  - D. V. Ionescu
TI  - The Gravitational Field of an Electrically Charged Mass Point and the Causality Principle in the RTG
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 324
EP  - 336
VL  - 136
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_136_2_a10/
LA  - ru
ID  - TMF_2003_136_2_a10
ER  - 
%0 Journal Article
%A D. V. Ionescu
%T The Gravitational Field of an Electrically Charged Mass Point and the Causality Principle in the RTG
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 324-336
%V 136
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2003_136_2_a10/
%G ru
%F TMF_2003_136_2_a10
D. V. Ionescu. The Gravitational Field of an Electrically Charged Mass Point and the Causality Principle in the RTG. Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 2, pp. 324-336. http://geodesic.mathdoc.fr/item/TMF_2003_136_2_a10/

[1] A. A. Logunov, M. A. Mestvirishvili, Relyativistskaya teoriya gravitatsii, Nauka, M., 1989 | MR

[2] A. A. Logunov, Relyativistskaya teoriya gravitatsii i printsip Makha, Preprint IFVE No 95-128, IFVE, Protvino, 1995

[3] A. A. Logunov, Relativistic Theory of Gravity and Mach Principle, Horizons in World Physics, 215, Nova Science Publishers, Commack, N. Y., 1998 ; А. А. Логунов, Теория гравитационного поля, Наука, М., 2001 | MR | MR

[4] C. Truesdell, R. A. Toupin, “The classical field theories”, Handbuch der Physik, III/1, Springer, Berlin–Gottingen–Heidelberg, 1960, 226–858 | DOI | MR

[5] E. Soós, Géométrie et électromagnetisme, University of Timisoara, Math. Dept., Timisoara, 1992

[6] C. C. Wang, Mathematical Principles of Mechanics and Electromagnetism. Part B. Electromagnetism and Gravitation, Plenum, New York–London, 1979 | MR

[7] P. V. Karabut, Yu. V. Chugreev, TMF, 78:2 (1989), 305–313 | MR

[8] D. Ionescu, E. Soós, Rev. Roumaine Math. Pures Appl., 45:2 (2000), 251–260 | MR

[9] K. Meller, Teoriya otnositelnosti, Atomizdat, M., 1975

[10] Yu. P. Vyblyi, “Pole tochechnogo zaryada v relyativistskoi teorii gravitatsii”, Tochnye resheniya uravnenii Einshteina i ikh fizicheskaya interpretatsiya, ed. I. R. Piir, Izd-vo Tartuskogo universiteta, Tartu, 1988, 74–75