Cohomology of a Poisson Algebra
Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 2, pp. 179-196 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a technique for calculating the cohomology of a Poisson algebra using the Laplace transformation of distributions with compact support. We find the lowest-order cohomologies of this algebra with coefficients in two natural representations: the trivial and the adjoint representations.
Mots-clés : Lie algebras, Poisson algebras
Keywords: cohomology.
@article{TMF_2003_136_2_a0,
     author = {V. V. Zharinov},
     title = {Cohomology of a {Poisson} {Algebra}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {179--196},
     year = {2003},
     volume = {136},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_136_2_a0/}
}
TY  - JOUR
AU  - V. V. Zharinov
TI  - Cohomology of a Poisson Algebra
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 179
EP  - 196
VL  - 136
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_136_2_a0/
LA  - ru
ID  - TMF_2003_136_2_a0
ER  - 
%0 Journal Article
%A V. V. Zharinov
%T Cohomology of a Poisson Algebra
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 179-196
%V 136
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2003_136_2_a0/
%G ru
%F TMF_2003_136_2_a0
V. V. Zharinov. Cohomology of a Poisson Algebra. Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 2, pp. 179-196. http://geodesic.mathdoc.fr/item/TMF_2003_136_2_a0/

[1] N. Kamran, P. J. Olver (Eds.), Lie algebras, Cohomology, and New Applications to Quantum Mechanics, Contemp. Math., 160, AMS, Providence, Rhode Island, 1994 | DOI | MR

[2] J. A. de Azcárraga, J. M. Izquierdo, J. C. Pérez Bueno, An introduction to some novel applications of Lie algebra cohomology in mathematics and physics, E-print physics/9803046 | MR

[3] M. Henneaux, J. Krasil'shchik, A. Vinogradov (Eds.), Secondary Calculus and Cohomological Physics, Contemp. Math., 219, AMS, Providence, Rhode Island, 1998 | DOI | MR

[4] M. Bordemann, The deformation quantization of certain super-Poisson brackets and BRST cohomology, ; P. Monnier, Poisson cohomology in dimension two, ; Computation of Nambu–Poisson cohomologies, ; Z. Giunashvili, Differential complex of Poisson manifold and distributions, ; Noncommutative geometry of phase space, ; O. Radko, A classification of topologicaly stable Poisson structures on a compact oriented surface, ; V. V. Kornyak, Computation of cohomology of Lie algebra of Hamiltonian vector fields by splitting cochain complex into minimal subcomplexes, ; A. Gammella, Pacific. J. Math., 203 (2002), 280–320 ; ; J. A. de Azcárraga, J. M. Izquierdo, J. C. Pérez Bueno, J. Phys. A, 30 (1997), L607–L616 ; ; S. Evens, J.-H. Lu, Poisson harmonic forms, Kostant harmonic forms, and the $S^1$-equivariant cohomology of $K/T$, ; M. Penkava, P. Vanhaecke, Deformation quantization of polynomial Poisson algebras, E-print math.QA/0003218E-print math.DG/0005261E-print math.DG/0007103E-print math-ph/0103038E-print math-ph/0203027E-print math.SG/0110304E-print math.NA/0205046E-print math.DG/0207215E-print hep-th/9703019E-print dg-ga/9711019E-print math.QA/9804022 | MR | MR | DOI | MR | DOI | MR | Zbl | MR | MR

[5] V. V. Zharinov, TMF, 128:2 (2001), 147–160 | DOI | MR | Zbl

[6] N. Burbaki, Gruppy i algebry Li, Mir, M., 1976 | MR

[7] P. Karte, “Kogomologii algebr Li”, Teoriya algebr Li. Topologiya grupp Li, Seminar “Sofus Li”, ed. E. B. Dynkin, IL, M., 1962, 32

[8] D. B. Fuks, Kogomologii beskonechnomernykh algebr Li, Nauka, M., 1984 | MR | Zbl

[9] B. L. Feigin, D. B. Fuks, “Kogomologii grupp i algebr Li”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 21, ed. R. V. Gamkrelidze, VINITI, M., 1988, 121 | MR

[10] L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi. T. 1. Teoriya raspredelenii i analiz Fure, Mir, M., 1986 | MR