Two-Sided Estimates for the Internal Energy of Thermal Photons
Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 1, pp. 158-163 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The upper- and lower-bound estimates for the thermodynamic averages of the occupation number operators are obtained for the case of a nonlinear photon system in thermal equilibrium with the thermostat. Two-sided inequalities for the internal energy of such a system are constructed from the obtained estimates.
Mots-clés : photon
Keywords: Gibbs state, inner product, occupation numbers, Fock representation.
@article{TMF_2003_136_1_a9,
     author = {M. Corgini and D. P. Sankovich},
     title = {Two-Sided {Estimates} for the {Internal} {Energy} of {Thermal} {Photons}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {158--163},
     year = {2003},
     volume = {136},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_136_1_a9/}
}
TY  - JOUR
AU  - M. Corgini
AU  - D. P. Sankovich
TI  - Two-Sided Estimates for the Internal Energy of Thermal Photons
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 158
EP  - 163
VL  - 136
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_136_1_a9/
LA  - ru
ID  - TMF_2003_136_1_a9
ER  - 
%0 Journal Article
%A M. Corgini
%A D. P. Sankovich
%T Two-Sided Estimates for the Internal Energy of Thermal Photons
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 158-163
%V 136
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2003_136_1_a9/
%G ru
%F TMF_2003_136_1_a9
M. Corgini; D. P. Sankovich. Two-Sided Estimates for the Internal Energy of Thermal Photons. Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 1, pp. 158-163. http://geodesic.mathdoc.fr/item/TMF_2003_136_1_a9/

[1] A. I. Akhiezer, V. B. Berestetskii, Kvantovaya elektrodinamika, Nauka, M., 1969 | MR

[2] Ya. B. Zeldovich, I. D. Novikov, Stroenie i evolyutsiya Vselennoi, Nauka, M., 1975

[3] G. M. Zaslavskii, Stokhastichnost dinamicheskikh sistem, Nauka, M., 1984 | MR | Zbl

[4] J. Hertle, R. Honneger, J. Math. Phys., 33 (1992), 143 | DOI | MR

[5] J. Hertle, R. Honneger, J. Math. Phys., 33 (1992), 343 | DOI | MR

[6] M. Corgini, D. P. Sankovich, Int. J. Mod. Phys. B, 16:3 (2002), 497 | DOI | MR | Zbl

[7] H. Falk, J. W. Bruck, Phys. Rev., 180:1 (1969), 442 | DOI

[8] G. Roepstorff, Commun. Math. Phys., 53 (1977), 143 | DOI | MR

[9] O. Brattelli, D. W. Robinson, Operators Algebras and Quantum Statistical Mechanics, V. II, Springer, New York, 1981 | MR

[10] G. P. Berman, G. M. Zaslavskii, A. R. Kolovskii, ZhETF, 81 (1981), 506

[11] G. Bergman, N. Bulgakov, D. Holm, Crossover-Time in Quantum Boson and Spin Systems, Lect. Notes in Phys., m21, Springer, Berlin, 1994 | MR

[12] N. N. Bogolubov, Phys. Abh. Sow., 1 (1962), 113

[13] N. N. Bogolubov (Jr.), Physica, 32 (1966), 933 | DOI | MR