Representation of Quantum Brownian Motion in the Collective Coordinate Method
Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 1, pp. 115-147 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider two explicitly solvable models of quantum random processes described by the Langevin equation, namely, those for a “free” quantum Brownian particle and for a quantum Brownian harmonic oscillator. The Hamiltonian (string) realization of the models reveals a soliton-like structure of “classical” solutions. Accordingly, the zero-mode collective coordinate method turns out to be an adequate means for describing the quantum dynamics of the models.
Keywords: quantum Langevin equation, string thermostat model, temperature representations, asymptotic properties of covariation.
@article{TMF_2003_136_1_a7,
     author = {A. I. Oksak and A. D. Sukhanov},
     title = {Representation of {Quantum} {Brownian} {Motion} in the {Collective} {Coordinate} {Method}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {115--147},
     year = {2003},
     volume = {136},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_136_1_a7/}
}
TY  - JOUR
AU  - A. I. Oksak
AU  - A. D. Sukhanov
TI  - Representation of Quantum Brownian Motion in the Collective Coordinate Method
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 115
EP  - 147
VL  - 136
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_136_1_a7/
LA  - ru
ID  - TMF_2003_136_1_a7
ER  - 
%0 Journal Article
%A A. I. Oksak
%A A. D. Sukhanov
%T Representation of Quantum Brownian Motion in the Collective Coordinate Method
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 115-147
%V 136
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2003_136_1_a7/
%G ru
%F TMF_2003_136_1_a7
A. I. Oksak; A. D. Sukhanov. Representation of Quantum Brownian Motion in the Collective Coordinate Method. Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 1, pp. 115-147. http://geodesic.mathdoc.fr/item/TMF_2003_136_1_a7/

[1] W. H. Louisell, Radiation and Noise in Quantum Electronics, McGraw-Hill, New York, 1965

[2] W. H. Louisell, Quantum Statistical Properties of Radiation, Wiley, New York, 1973 | MR

[3] Ya. B. Zeldovich, A. M. Perelomov, V. S. Popov, ZhETF, 55 (1968), 589; 57 (1969), 196

[4] A. O. Caldeira, A. J. Leggett, Ann. Phys., 149 (1983), 34 ; 153 (1984), 415 | DOI

[5] L. Accardi, Y. G. Lu, I. V. Volovich, Quantum Theory and Its Stochastic Limit, Springer, Berlin, 2002 | MR | Zbl

[6] G. W. Ford, M. Kac, P. Mazur, J. Math. Phys., 6 (1965), 504 | DOI | MR | Zbl

[7] J. T. Lewis, H. Maasen, “Hamiltonian models of classical and quantum stochastic processes”, Quantum Probability and Applications to the Quantum Theory of Irreversible Processes, Proc. of the Int. Workshop (Villa Mondragone, Italy, September 6–11, 1982), Lect. Notes in Math., 1055, eds. L. Accardi, A. Frigerio, V. Giorini, Springer, Berlin, 1984, 245 | DOI | MR

[8] H. Dekker, Phys. Rep., 80 (1981), 1 | DOI | MR

[9] H. Lamb, Proc. London Math. Soc., 2 (1900), 88

[10] A. I. Oksak, A. D. Sukhanov, TMF, 116 (1998), 201 | DOI | MR | Zbl

[11] A. I. Oksak, TMF, 48 (1981), 297 | MR

[12] N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, I. T. Todorov, Obschie printsipy kvantovoi teorii polya, Nauka, M., 1987 | MR

[13] R. Radzharaman, Solitony i instantony v kvantovoi teorii polya, Mir, M., 1985

[14] Zh. Diksme, $S^*$-algebry i ikh predstavleniya, Nauka, M., 1974 | MR

[15] A. D. Sukhanov, EChAYa, 32 (2001), 1177; ТМФ, 132 (2002), 449 | DOI | MR | Zbl

[16] I. S. Gradshtein, G. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963 | MR