Representation of Quantum Brownian Motion in the Collective Coordinate Method
Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 1, pp. 115-147

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider two explicitly solvable models of quantum random processes described by the Langevin equation, namely, those for a “free” quantum Brownian particle and for a quantum Brownian harmonic oscillator. The Hamiltonian (string) realization of the models reveals a soliton-like structure of “classical” solutions. Accordingly, the zero-mode collective coordinate method turns out to be an adequate means for describing the quantum dynamics of the models.
Keywords: quantum Langevin equation, string thermostat model, temperature representations, asymptotic properties of covariation.
@article{TMF_2003_136_1_a7,
     author = {A. I. Oksak and A. D. Sukhanov},
     title = {Representation of {Quantum} {Brownian} {Motion} in the {Collective} {Coordinate} {Method}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {115--147},
     publisher = {mathdoc},
     volume = {136},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_136_1_a7/}
}
TY  - JOUR
AU  - A. I. Oksak
AU  - A. D. Sukhanov
TI  - Representation of Quantum Brownian Motion in the Collective Coordinate Method
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 115
EP  - 147
VL  - 136
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_136_1_a7/
LA  - ru
ID  - TMF_2003_136_1_a7
ER  - 
%0 Journal Article
%A A. I. Oksak
%A A. D. Sukhanov
%T Representation of Quantum Brownian Motion in the Collective Coordinate Method
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 115-147
%V 136
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2003_136_1_a7/
%G ru
%F TMF_2003_136_1_a7
A. I. Oksak; A. D. Sukhanov. Representation of Quantum Brownian Motion in the Collective Coordinate Method. Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 1, pp. 115-147. http://geodesic.mathdoc.fr/item/TMF_2003_136_1_a7/