Spectral Curves and Parameterization of a Discrete Integrable Three-Dimensional Model
Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 1, pp. 30-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a discrete classical integrable model on a three-dimensional cubic lattice. The solutions of this model can be used to parameterize the Boltzmann weights of various three-dimensional spin models. We find the general solution of this model constructed in terms of the theta functions defined on an arbitrary compact algebraic curve. Imposing periodic boundary conditions fixes the algebraic curve. We show that the curve then coincides with the spectral curve of the auxiliary linear problem. For a rational curve, we construct the soliton solution of the model.
Keywords: three-dimensional integrable systems, Bäcklund transformations, spectral curves.
@article{TMF_2003_136_1_a2,
     author = {S. Z. Pakulyak and S. M. Sergeev},
     title = {Spectral {Curves} and {Parameterization} of a {Discrete} {Integrable} {Three-Dimensional} {Model}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {30--51},
     year = {2003},
     volume = {136},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_136_1_a2/}
}
TY  - JOUR
AU  - S. Z. Pakulyak
AU  - S. M. Sergeev
TI  - Spectral Curves and Parameterization of a Discrete Integrable Three-Dimensional Model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 30
EP  - 51
VL  - 136
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_136_1_a2/
LA  - ru
ID  - TMF_2003_136_1_a2
ER  - 
%0 Journal Article
%A S. Z. Pakulyak
%A S. M. Sergeev
%T Spectral Curves and Parameterization of a Discrete Integrable Three-Dimensional Model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 30-51
%V 136
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2003_136_1_a2/
%G ru
%F TMF_2003_136_1_a2
S. Z. Pakulyak; S. M. Sergeev. Spectral Curves and Parameterization of a Discrete Integrable Three-Dimensional Model. Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 1, pp. 30-51. http://geodesic.mathdoc.fr/item/TMF_2003_136_1_a2/

[1] S. M. Sergeev, TMF, 118:3 (1999), 479–484 ; 124:3 (2000), 391–409 ; S. Sergeev, J. Phys. A, 32 (1999), 5693–5714 ; 34 (2001), 10493–10503 ; Phys. Lett. A, 265 (2000), 364–368 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[2] I. Krichiver, UMN, 33:4 (1978), 215–216 | MR

[3] R. Hirota, J. Phys. Soc. Japan, 50 (1981), 3785–3791 | DOI | MR

[4] D. Mamford, Lektsii o teta-funktsiyakh, Mir, M., 1988 | MR

[5] J. D. Fay, Theta Functions on Riemann Surfaces, Lect. Notes in Math., 352, Springer, Berlin, 1973 | DOI | MR | Zbl

[6] G. Shpringer, Vvedenie v teoriyu rimanovykh poverkhnostei, IL, M., 1960 | MR

[7] S. Sergeev, J. Nonlin. Math. Phys., 27 (2000), 57–72 | DOI | MR

[8] S. Pakuliak, S. Sergeev, Int. J. Math. Math. Sci., 31:9 (2002), 513–554 | DOI | MR

[9] G. von Gehlen, S. Pakuliak, S. Sergeev, Explicit free parametrization of the modified tetrahedron equation, Preprint MPI-2002-102, MPI, Bonn, 2002 | MR

[10] S. Sergeev, Functional equations and separation of variables for 3d spin models, Preprint MPI-2002-46, MPI, Bonn, 2002 | MR