Quasi-Frobenius Algebras and Their Integrable $N$-Parameter Deformations Generated by Compatible $(N\times N)$ Metrics of Constant Riemannian Curvature
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 1, pp. 20-29
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove that the equations describing compatible $(N\times N)$ metrics of constant Riemannian curvature define a special class of integrable $N$-parameter deformations of quasi-Frobenius (in general, noncommutative) algebras. We discuss connections with open-closed two-dimensional topological field theories, associativity equations, and Frobenius and quasi-Frobenius manifolds. We conjecture that open-closed two-dimensional topological field theories correspond to a special class of integrable deformations of associative quasi-Frobenius algebras.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
quasi-Frobenius algebra
Keywords: Frobenius algebra, integrable deformation of an algebra, topological field theory, compatible metrics, constant-curvature metrics, integrable system, quasi-Frobenius manifold, Frobenius manifold, flat pencil of metrics, associativity equations.
                    
                  
                
                
                Keywords: Frobenius algebra, integrable deformation of an algebra, topological field theory, compatible metrics, constant-curvature metrics, integrable system, quasi-Frobenius manifold, Frobenius manifold, flat pencil of metrics, associativity equations.
@article{TMF_2003_136_1_a1,
     author = {O. I. Mokhov},
     title = {Quasi-Frobenius {Algebras} and {Their} {Integrable} $N${-Parameter} {Deformations} {Generated} by {Compatible} $(N\times N)$ {Metrics} of {Constant} {Riemannian} {Curvature}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {20--29},
     publisher = {mathdoc},
     volume = {136},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_136_1_a1/}
}
                      
                      
                    TY - JOUR AU - O. I. Mokhov TI - Quasi-Frobenius Algebras and Their Integrable $N$-Parameter Deformations Generated by Compatible $(N\times N)$ Metrics of Constant Riemannian Curvature JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2003 SP - 20 EP - 29 VL - 136 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2003_136_1_a1/ LA - ru ID - TMF_2003_136_1_a1 ER -
%0 Journal Article %A O. I. Mokhov %T Quasi-Frobenius Algebras and Their Integrable $N$-Parameter Deformations Generated by Compatible $(N\times N)$ Metrics of Constant Riemannian Curvature %J Teoretičeskaâ i matematičeskaâ fizika %D 2003 %P 20-29 %V 136 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2003_136_1_a1/ %G ru %F TMF_2003_136_1_a1
O. I. Mokhov. Quasi-Frobenius Algebras and Their Integrable $N$-Parameter Deformations Generated by Compatible $(N\times N)$ Metrics of Constant Riemannian Curvature. Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 1, pp. 20-29. http://geodesic.mathdoc.fr/item/TMF_2003_136_1_a1/
