Essential and Discrete Spectra of the Three-Particle Schrödinger Operator on a Lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 3, pp. 478-503 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the system of three quantum particles (two are bosons and the third is arbitrary) interacting by attractive pair contact potentials on a three-dimensional lattice. The essential spectrum is described. The existence of the Efimov effect is proved in the case where either two or three two-particle subsystems of the three-particle system have virtual levels at the left edge of the three-particle essential spectrum for zero total quasimomentum ($K=0$). We also show that for small values of the total quasimomentum ($K\ne 0$), the number of bound states is finite.
Keywords: essential spectrum, virtual level, channel operator, discrete spectrum, Weyl inequality, Hilbert–Schmidt operator.
@article{TMF_2003_135_3_a9,
     author = {S. N. Lakaev and M. I. Muminov},
     title = {Essential and {Discrete} {Spectra} of the {Three-Particle} {Schr\"odinger} {Operator} on a {Lattice}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {478--503},
     year = {2003},
     volume = {135},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a9/}
}
TY  - JOUR
AU  - S. N. Lakaev
AU  - M. I. Muminov
TI  - Essential and Discrete Spectra of the Three-Particle Schrödinger Operator on a Lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 478
EP  - 503
VL  - 135
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a9/
LA  - ru
ID  - TMF_2003_135_3_a9
ER  - 
%0 Journal Article
%A S. N. Lakaev
%A M. I. Muminov
%T Essential and Discrete Spectra of the Three-Particle Schrödinger Operator on a Lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 478-503
%V 135
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a9/
%G ru
%F TMF_2003_135_3_a9
S. N. Lakaev; M. I. Muminov. Essential and Discrete Spectra of the Three-Particle Schrödinger Operator on a Lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 3, pp. 478-503. http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a9/

[1] V. N. Efimov, YaF, 12:5 (1970), 1080–1091

[2] S. P. Merkurev, L. D. Faddeev, Kvantovaya teoriya rasseyaniya dlya sistem neskolkikh chastits, Nauka, M., 1985 | MR

[3] R. D. Amado, J. V. Noble, Phys. Rev. D, 5:8 (1971), 1992–2002 | DOI

[4] D. R. Yafaev, Matem. sb., 94(136):4(8) (1974), 567–593 | MR | Zbl

[5] Yu. N. Ovchinnikov, I. M. Sigal, Ann. Phys., 123 (1989), 274–295 | DOI | MR

[6] H. Tamura, J. Funct. Anal., 95 (1991), 433–459 | DOI | MR | Zbl

[7] D. C. Mattis, Rev. Mod. Phys., 58:2 (1986), 361–379 | DOI | MR

[8] A. I. Mogilner, “The problem of a quasi-particles in solidstate physics”, Application of Self-adjoint Extensions in Quantum Physics, Lect. Notes Phys., 324, eds. P. Exner, P. Seba, Springer, Berlin, 1989, 160–173 | DOI | MR

[9] V. A. Malyshev, R. A. Minlos, Tr. Sem. Petrovskogo, no. 9, 1983, 63–80 | MR | Zbl

[10] S. N. Lakaev, TMF, 89:1 (1991), 94–104 | MR

[11] S. N. Lakaev, Funkts. analiz i ego prilozh., 27:3 (1993), 15–28 | MR | Zbl

[12] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 1. Funktsionalnyi analiz, Mir, M., 1977 | MR

[13] M. Sh. Birman, M. Z. Solomyak, Spectral theory of selfadjoint operators in Hilbert Space, D. Reidel P. C., Dordrecht, 1987 | MR

[14] A. V. Sobolev, Commun. Math. Phys., 156 (1993), 127–168 | DOI | MR

[15] S. Albeverio, F. Gestezi, R. Khëeg-Kron, Kh. Kholdoen, Reshaemye modeli v kvantovoi mekhanike, Mir, M., 1991 | MR

[16] I. Ts. Gokhberg, M. G. Krein, UMN, 18:2(80) (1958), 3–78

[17] G. A. Korn, T. M. Korn, Spravochnik po matematike, Nauka, M., 1977 | MR