Essential and Discrete Spectra of the Three-Particle Schr\"odinger Operator on a Lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 3, pp. 478-503
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the system of three quantum particles (two are bosons and the third is arbitrary) interacting by attractive pair contact potentials on a three-dimensional lattice. The essential spectrum is described. The existence of the Efimov effect is proved in the case where either two or three two-particle subsystems of the three-particle system have virtual levels at the left edge of the three-particle essential spectrum for zero total quasimomentum ($K=0$). We also show that for small values of the total quasimomentum ($K\ne 0$), the number of bound states is finite.
Keywords:
essential spectrum, virtual level, channel operator, discrete spectrum, Weyl inequality, Hilbert–Schmidt operator.
@article{TMF_2003_135_3_a9,
author = {S. N. Lakaev and M. I. Muminov},
title = {Essential and {Discrete} {Spectra} of the {Three-Particle} {Schr\"odinger} {Operator} on a {Lattice}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {478--503},
publisher = {mathdoc},
volume = {135},
number = {3},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a9/}
}
TY - JOUR AU - S. N. Lakaev AU - M. I. Muminov TI - Essential and Discrete Spectra of the Three-Particle Schr\"odinger Operator on a Lattice JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2003 SP - 478 EP - 503 VL - 135 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a9/ LA - ru ID - TMF_2003_135_3_a9 ER -
%0 Journal Article %A S. N. Lakaev %A M. I. Muminov %T Essential and Discrete Spectra of the Three-Particle Schr\"odinger Operator on a Lattice %J Teoretičeskaâ i matematičeskaâ fizika %D 2003 %P 478-503 %V 135 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a9/ %G ru %F TMF_2003_135_3_a9
S. N. Lakaev; M. I. Muminov. Essential and Discrete Spectra of the Three-Particle Schr\"odinger Operator on a Lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 3, pp. 478-503. http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a9/