Modularity and Total Ellipticity of Some Multiple Series of Hypergeometric Type
Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 3, pp. 462-477
Voir la notice de l'article provenant de la source Math-Net.Ru
We collect some new evidence for the validity of the conjecture that every totally elliptic hypergeometric series is modular invariant and briefly discuss a generalization of such series to Riemann surfaces of arbitrary genus.
Keywords:
theta functions, elliptic hypergeometric series, modular group, summation formulas.
@article{TMF_2003_135_3_a8,
author = {V. P. Spiridonov},
title = {Modularity and {Total} {Ellipticity} of {Some} {Multiple} {Series} of {Hypergeometric} {Type}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {462--477},
publisher = {mathdoc},
volume = {135},
number = {3},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a8/}
}
TY - JOUR AU - V. P. Spiridonov TI - Modularity and Total Ellipticity of Some Multiple Series of Hypergeometric Type JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2003 SP - 462 EP - 477 VL - 135 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a8/ LA - ru ID - TMF_2003_135_3_a8 ER -
V. P. Spiridonov. Modularity and Total Ellipticity of Some Multiple Series of Hypergeometric Type. Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 3, pp. 462-477. http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a8/