Modularity and Total Ellipticity of Some Multiple Series of Hypergeometric Type
Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 3, pp. 462-477 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We collect some new evidence for the validity of the conjecture that every totally elliptic hypergeometric series is modular invariant and briefly discuss a generalization of such series to Riemann surfaces of arbitrary genus.
Keywords: theta functions, elliptic hypergeometric series, modular group, summation formulas.
@article{TMF_2003_135_3_a8,
     author = {V. P. Spiridonov},
     title = {Modularity and {Total} {Ellipticity} of {Some} {Multiple} {Series} of {Hypergeometric} {Type}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {462--477},
     year = {2003},
     volume = {135},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a8/}
}
TY  - JOUR
AU  - V. P. Spiridonov
TI  - Modularity and Total Ellipticity of Some Multiple Series of Hypergeometric Type
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 462
EP  - 477
VL  - 135
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a8/
LA  - ru
ID  - TMF_2003_135_3_a8
ER  - 
%0 Journal Article
%A V. P. Spiridonov
%T Modularity and Total Ellipticity of Some Multiple Series of Hypergeometric Type
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 462-477
%V 135
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a8/
%G ru
%F TMF_2003_135_3_a8
V. P. Spiridonov. Modularity and Total Ellipticity of Some Multiple Series of Hypergeometric Type. Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 3, pp. 462-477. http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a8/

[1] V. P. Spiridonov, “Theta hypergeometric series”, Asymptotic Combinatorics with Application to Mathematical Physics, St. Petersburg, July 9–22, 2001, eds. V. A. Malyshev, A. M. Vershik, Kluwer, Dordrecht, 2002, 307–327 | DOI | MR | Zbl

[2] E. T. Whittaker, G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, Cambridge, 1986 | MR

[3] E. Date, M. Jimbo, A. Kuniba, T. Miwa, M. Okado, Adv. Stud. Pure Math., 16, 1988, 17–122 | MR | Zbl

[4] G. Gasper, M. Rahman, Basic Hypergeometric Series, Encyclopedia of Mathematics and its Applications, 35, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[5] I. B. Frenkel, V. G. Turaev, “Elliptic solutions of the Yang–Baxter equation and modular hypergeometric functions”, The Arnold–Gelfand Mathematical Seminars: Geometry and Singularity Theory, eds. V. I. Arnold et al., Birkhäuser, Boston, MA, 1997, 171–204 | DOI | MR | Zbl

[6] V. P. Spiridonov, “The factorization method, self-similar potentials and quantum algebras”, Special Functions-2000: Current Perspective and Future Directions, Proc. of the NATO Adv. Study Institute (Tempe, USA, May 29–June 9, 2000), NATO Sci. Ser. II. Math. Phys. Chem., 30, eds. J. Bustoz, M. E. H. Ismail, S. K. Suslov, Kluwer, Dordrecht, 2001, 335–364 | MR | Zbl

[7] V. P. Spiridonov, A. S. Zhedanov, Commun. Math. Phys., 210 (2000), 49–83 | DOI | MR | Zbl

[8] W. J. Holman, L. C. Biedenharn, J. D. Louck, SIAM J. Math. Anal., 7 (1976), 529–541 | DOI | MR | Zbl

[9] S. C. Milne, “The multidimensional ${}_1\Psi_1$ sum and Macdonald identities for $A^{(1)}_l$”, Theta Functions, Proc. 35th Summer Res. Inst. Bowdoin Coll. on Theta Functions (Brunwick, ME, July 6–24, 1987), Proc. Symp. Pure Math. Part. 2, 49, eds. L. Ehrenpreis, R. C. Gunning, AMS, Providence, RI, 1989, 323–359 | MR

[10] S. C. Milne, G. M. Lilly, Discrete Math., 139 (1995), 319–346 | DOI | MR | Zbl

[11] R. Y. Denis, R. A. Gustafson, SIAM J. Math. Anal., 23 (1992), 552–561 | DOI | MR | Zbl

[12] R. A. Gustafson, “The Macdonald identities for affine root systems of classical type and hypergeometric series very-well-poised on semisimple Lie algebras”, Proc. of the Ramanujan Birth Century Year International Symposium on Analysis (Pune, December 26–28, 1987), eds. N. K. Thakare, K. C. Sharma, T. T. Raghunathan, Macmillan Co. of India, New Dehli, 1989, 185–224 | MR

[13] S. O. Warnaar, Constr. Approx., 18 (2002), 479–502 | DOI | MR | Zbl

[14] J. F. van Diejen, V. P. Spiridonov, Math. Res. Lett., 7 (2000), 729–746 | DOI | MR | Zbl

[15] J. F. van Diejen, Publ. Res. Inst. Math. Sci., 33 (1997), 483–508 | DOI | MR | Zbl

[16] H. Rosengren, Contemp. Math., 291, 2001, 193–202 | DOI | MR | Zbl

[17] J. F. van Diejen, V. P. Spiridonov, Lett. Math. Phys., 58 (2001), 223–238 | DOI | MR | Zbl

[18] H. Rosengren, Elliptic hypergeometric series on root systems, E-print math.CA/0207046 | MR

[19] M. Schlosser, Discrete Math., 210 (2000), 151–169 | DOI | MR | Zbl

[20] M. Eichler, D. Zagier, The Theory of Jacobi Forms, Progr. in Math., 55, Birkhäuser, Boston, 1985 | DOI | MR | Zbl

[21] V. P. Spiridonov, Int. Math. Res. Notices, 37 (2002), 1945–1977 | DOI | MR | Zbl

[22] G. Bhatnagar, M. Schlosser, Constr. Approx., 14 (1998), 531–567 | DOI | MR | Zbl

[23] M. Schlosser, Ramanujan J., 1 (1997), 243–274 | DOI | MR | Zbl

[24] G. Bhatnagar, Ramanujan J., 3 (1999), 175–203 | DOI | MR | Zbl

[25] D. Mamford, Lektsii o teta-funktsiyakh, Mir, M., 1988 | MR