Modularity and Total Ellipticity of Some Multiple Series of Hypergeometric Type
Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 3, pp. 462-477

Voir la notice de l'article provenant de la source Math-Net.Ru

We collect some new evidence for the validity of the conjecture that every totally elliptic hypergeometric series is modular invariant and briefly discuss a generalization of such series to Riemann surfaces of arbitrary genus.
Keywords: theta functions, elliptic hypergeometric series, modular group, summation formulas.
@article{TMF_2003_135_3_a8,
     author = {V. P. Spiridonov},
     title = {Modularity and {Total} {Ellipticity} of {Some} {Multiple} {Series} of {Hypergeometric} {Type}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {462--477},
     publisher = {mathdoc},
     volume = {135},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a8/}
}
TY  - JOUR
AU  - V. P. Spiridonov
TI  - Modularity and Total Ellipticity of Some Multiple Series of Hypergeometric Type
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 462
EP  - 477
VL  - 135
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a8/
LA  - ru
ID  - TMF_2003_135_3_a8
ER  - 
%0 Journal Article
%A V. P. Spiridonov
%T Modularity and Total Ellipticity of Some Multiple Series of Hypergeometric Type
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 462-477
%V 135
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a8/
%G ru
%F TMF_2003_135_3_a8
V. P. Spiridonov. Modularity and Total Ellipticity of Some Multiple Series of Hypergeometric Type. Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 3, pp. 462-477. http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a8/