Integrability in String/Field Theories and Hamiltonian Flows in the Space of Physical Systems
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 3, pp. 434-451
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Integrability in string/field theories is known to emerge when considering dynamics in the moduli space of physical theories. This implies that one must study the dynamics with respect to unusual time variables such as coupling constants or other quantities parameterizing the configuration space of physical theories. The dynamics given by variations of coupling constants can be considered as a canonical transformation or, infinitesimally, a Hamiltonian flow in the space of physical systems. We briefly consider an example of integrable mechanical systems. Then any function $T(\vec p,\vec q)$ generates a one-parameter family of integrable systems in the vicinity of a single system. For an integrable system with several coupling constants, the corresponding “Hamiltonians” $T_i(\vec p,\vec q)$ satisfy the Whitham equations and, after quantization (of the original system), become operators satisfying the zero-curvature condition in the coupling-constant space.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
string theory, quantum field theory, integrable systems.
                    
                  
                
                
                @article{TMF_2003_135_3_a6,
     author = {A. D. Mironov},
     title = {Integrability in {String/Field} {Theories} and {Hamiltonian} {Flows} in the {Space} of {Physical} {Systems}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {434--451},
     publisher = {mathdoc},
     volume = {135},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a6/}
}
                      
                      
                    TY - JOUR AU - A. D. Mironov TI - Integrability in String/Field Theories and Hamiltonian Flows in the Space of Physical Systems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2003 SP - 434 EP - 451 VL - 135 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a6/ LA - ru ID - TMF_2003_135_3_a6 ER -
A. D. Mironov. Integrability in String/Field Theories and Hamiltonian Flows in the Space of Physical Systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 3, pp. 434-451. http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a6/
