Integrability in String/Field Theories and Hamiltonian Flows in the Space of Physical Systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 3, pp. 434-451 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Integrability in string/field theories is known to emerge when considering dynamics in the moduli space of physical theories. This implies that one must study the dynamics with respect to unusual time variables such as coupling constants or other quantities parameterizing the configuration space of physical theories. The dynamics given by variations of coupling constants can be considered as a canonical transformation or, infinitesimally, a Hamiltonian flow in the space of physical systems. We briefly consider an example of integrable mechanical systems. Then any function $T(\vec p,\vec q)$ generates a one-parameter family of integrable systems in the vicinity of a single system. For an integrable system with several coupling constants, the corresponding “Hamiltonians” $T_i(\vec p,\vec q)$ satisfy the Whitham equations and, after quantization (of the original system), become operators satisfying the zero-curvature condition in the coupling-constant space.
Keywords: string theory, quantum field theory, integrable systems.
@article{TMF_2003_135_3_a6,
     author = {A. D. Mironov},
     title = {Integrability in {String/Field} {Theories} and {Hamiltonian} {Flows} in the {Space} of {Physical} {Systems}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {434--451},
     year = {2003},
     volume = {135},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a6/}
}
TY  - JOUR
AU  - A. D. Mironov
TI  - Integrability in String/Field Theories and Hamiltonian Flows in the Space of Physical Systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 434
EP  - 451
VL  - 135
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a6/
LA  - ru
ID  - TMF_2003_135_3_a6
ER  - 
%0 Journal Article
%A A. D. Mironov
%T Integrability in String/Field Theories and Hamiltonian Flows in the Space of Physical Systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 434-451
%V 135
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a6/
%G ru
%F TMF_2003_135_3_a6
A. D. Mironov. Integrability in String/Field Theories and Hamiltonian Flows in the Space of Physical Systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 3, pp. 434-451. http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a6/

[1] A. Morozov, UFN, 162 (1992), 83 ; ; 164, 1994 ; ; A. Mironov, Int. J. Mod. Phys. A, 9 (1994), 4355 ; E-print hep-th/9303139E-print hep-th/9502091E-print hep-th/9312212 | DOI | DOI | DOI | MR | Zbl

[2] A. Mironov, A. Morozov, Phys. Lett. B, 524 (2002), 217 | DOI | MR | Zbl

[3] E. Brezin, V. Kazakov, Phys. Lett. B, 236 (1990), 144 | DOI | MR

[4] A. Gerasimov, A. Marshakov, A. Mironov, A. Morozov, A. Orlov, Nucl. Phys. B, 357 (1991), 565 | DOI | MR

[5] M. Toda, Teoriya nelineinykh reshetok, Mir, M., 1984 | MR

[6] A. Mironov, A. Morozov, Phys. Lett. B, 252 (1990), 47 ; J. Ambjørn, J. Jurkiewicz, Yu. M. Makeenko, Phys. Lett. B, 251 (1990), 517 ; H. Itoyama, Y. Matsuo, Phys. Lett. B, 255 (1991), 202 ; F. David, Mod. Phys. Lett. A, 5 (1990), 1019 | DOI | MR | DOI | MR | DOI | MR | DOI | MR | Zbl

[7] A. Mironov, A. Morozov, Phys. Lett. B, 490 (2000), 173 ; E-print hep-th/0005280 | DOI | MR | Zbl

[8] M. Fukuma, H. Kawai, R. Nakayama, Int. J. Mod. Phys. A, 6 (1991), 1385 ; Commun. Math. Phys., 143 (1992), 371 | DOI | MR | DOI | MR | Zbl

[9] E. Barouch, B. M. McCoy, T. T. Wu, Phys. Rev. Lett., 31 (1973), 1409 ; C. A. Tracy, B. M. McCoy, Phys. Rev. Lett., 31 (1973), 1500 ; T. T. Wu, B. M. McCoy, C. A. Tracy, E. Barouch, Phys. Rev. B, 13 (1976), 316 ; M. Jimbo, T. Miwa, M. Sato, Publ. RIMS Kyoto Univ., 14 (1978), 223 ; 15 (1979), 201 ; 577 ; 871 ; 1531; D. Bernard, A. LeClair, Nucl. Phys. B, 426:3 (1994), 534 ; erratum, 498 (1997), 619 ; E-print hep-th/9402144 | DOI | DOI | DOI | DOI | MR | Zbl | DOI | MR | Zbl | Zbl | Zbl | DOI | MR | DOI | MR

[10] A. R. Its, A. G. Izergin, V. E. Korepin, N. A. Slavnov, Int. J. Mod. Phys. B, 4 (1990), 1003 | DOI | MR | Zbl

[11] A. G. Izergin, D. A. Coker, V. E. Korepin, J. Phys. A, 25 (1992), 4315 | DOI | MR | Zbl

[12] S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, A. Zabrodin, Phys. Lett. B, 275 (1992), 311 ; ; Nucl. Phys. B, 380 (1992), 181 ; E-print hep-th/9111037E-print hep-th/9201013 | DOI | MR | DOI | MR

[13] S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, Int. J. Mod. Phys. A, 10 (1995), 2015 ; ; A. Mironov, A. Morozov, G. W. Semenoff, Int. J. Mod. Phys. A, 11 (1996), 5031 ; E-print hep-th/9312210E-print hep-th/9404005 | DOI | MR | Zbl | MR | DOI | MR | Zbl

[14] V. Knizhnik, UFN, 159 (1989), 401 | DOI | MR

[15] G. Akemann, P. H. Damgaard, Nucl. Phys. B, 576 (2000), 597 ; ; H. W. Braden, A. Mironov, A. Morozov, Phys. Lett. B, 514 (2001), 293 E-print hep-th/9910190 | DOI | MR | Zbl | DOI | MR | Zbl

[16] A. Morozov, Identities between quantum field theories in different dimensions, E-print hep-th/9810031

[17] N. Seiberg, E. Witten, Nucl. Phys. B, 426 (1994), 19 ; erratum, 430 (1994), 485 ; ; Nucl. Phys. B, 431 (1994), 484 ; E-print hep-th/9407087E-print hep-th/9408099 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[18] A. Gorsky, I. Krichever, A. Marshakov, A. Mironov, A. Morozov, Phys. Lett. B, 355 (1995), 466 ; E-print hep-th/9505035 | DOI | MR | Zbl

[19] H. W. Braden, I. M. Krichever (Eds.), Integrability: The Seiberg–Witten and Whitham Equations, Gordon and Beach, Amsterdam, 2000 ; A. Gorsky, A. Mironov, Integrable many-body systems and gauge theories, E-print hep-th/0011197 | MR | Zbl | MR

[20] H. Itoyama, A. Morozov, Nucl. Phys. B, 477 (1996), 855 ; ; Nucl. Phys. B, 491 (1997), 529 ; ; New matrix model solutions to the Kac–Schwarz problem, E-print hep-th/9511126E-print hep-th/9512161E-print hep-th/9601168 | DOI | MR | Zbl | DOI | MR | Zbl

[21] I. Krichever, Commun. Pure Appl. Math., 47 (1994), 437 ; B. Dubrovin, Nucl. Phys. B, 379 (1992), 627 ; Geometry of 2d topological field theories, E-print hep-th/9407018 | DOI | MR | Zbl | DOI | MR

[22] A. Gorsky, A. Marshakov, A. Mironov, A. Morozov, Nucl. Phys. B, 527 (1998), 690 ; E-print hep-th/9802007 | DOI | MR | Zbl

[23] S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, Mod. Phys. Lett. A, 8 (1993), 1047 ; С. Харчев, А. Маршаков, А. Миронов, А. Морозов, ТМФ, 95:2 (1993), 280 ; E-print hep-th/9208046 | DOI | MR | Zbl | MR | Zbl

[24] A. Marshakov, A. Mironov, A. Morozov, Phys. Lett. B, 389 (1996), 43 ; ; Mod. Phys. Lett. A, 12 (1997), 773 ; ; Int. J. Mod. Phys. A, 15 (2000), 1157 ; E-print hep-th/9607109E-print hep-th/9701014E-print hep-th/9701123 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl

[25] S. N. Ruijsenaars, Commun. Math. Phys., 115 (1988), 127 ; O. Babelon, D. Bernard, Phys. Lett. B, 317 (1993), 363 ; V. Fock, “Three remarks on group invariants related to flat connections”, Geometry and Integrable Models, eds. P. Pyatov, S. Solodukhin, World Scientific, Singapore, 1995, 20 ; V. Fock, A. Rosly, Amer. Math. Soc. Transl., 191 (1999), 67 ; ; V. Fock, A. Gorsky, N. Nekrasov, V. Roubtsov, JHEP, 0007 (2000), 028 ; A. Gorsky, V. Rubtsov, Dualities in integrable systems: geometric aspects, E-print math.QA/9802054E-print hep-th/0103004 | DOI | MR | Zbl | DOI | MR | Zbl | MR | MR | Zbl | DOI | MR | MR

[26] H. Braden, A. Marshakov, A. Mironov, A. Morozov, Nucl. Phys. B, 573 (2000), 553 ; ; А. Д. Миронов, ТМФ, 129 (2001), 327 ; E-print hep-th/9906240E-print hep-th/0104253 | DOI | MR | Zbl | DOI | MR | Zbl

[27] A. Mironov, A. Morozov, Phys. Lett. B, 475 (2000), 71 ; ; Double elliptic systems: problems and perspectives, ; H. Braden, A. Gorsky, A. Odesskii, V. Rubtsov, Nucl. Phys. B, 633 (2002), 414 ; E-print hep-th/9912088E-print hep-th/0001168E-print hep-th/0111066 | DOI | MR | Zbl | DOI | MR | Zbl