Commutation Relations in an Indefinite-Metric Space
Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 3, pp. 420-426
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe the irreducible regular representations of the algebra of operators $a$ and $b$ defined by$[a,b]=1$ and $ba=a^+b^+$ in an arbitrary nondegenerate closed indefinite-metric space. We find the relation of this algebra to the generalized Heisenberg algebra.
Keywords:
indefinite metric, Heisenberg algebra, regular representations.
@article{TMF_2003_135_3_a4,
author = {Yu. S. Vernov and M. N. Mnatsakanova},
title = {Commutation {Relations} in an {Indefinite-Metric} {Space}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {420--426},
publisher = {mathdoc},
volume = {135},
number = {3},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a4/}
}
TY - JOUR AU - Yu. S. Vernov AU - M. N. Mnatsakanova TI - Commutation Relations in an Indefinite-Metric Space JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2003 SP - 420 EP - 426 VL - 135 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a4/ LA - ru ID - TMF_2003_135_3_a4 ER -
Yu. S. Vernov; M. N. Mnatsakanova. Commutation Relations in an Indefinite-Metric Space. Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 3, pp. 420-426. http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a4/