Commutation Relations in an Indefinite-Metric Space
Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 3, pp. 420-426

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the irreducible regular representations of the algebra of operators $a$ and $b$ defined by$[a,b]=1$ and $ba=a^+b^+$ in an arbitrary nondegenerate closed indefinite-metric space. We find the relation of this algebra to the generalized Heisenberg algebra.
Keywords: indefinite metric, Heisenberg algebra, regular representations.
@article{TMF_2003_135_3_a4,
     author = {Yu. S. Vernov and M. N. Mnatsakanova},
     title = {Commutation {Relations} in an {Indefinite-Metric} {Space}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {420--426},
     publisher = {mathdoc},
     volume = {135},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a4/}
}
TY  - JOUR
AU  - Yu. S. Vernov
AU  - M. N. Mnatsakanova
TI  - Commutation Relations in an Indefinite-Metric Space
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 420
EP  - 426
VL  - 135
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a4/
LA  - ru
ID  - TMF_2003_135_3_a4
ER  - 
%0 Journal Article
%A Yu. S. Vernov
%A M. N. Mnatsakanova
%T Commutation Relations in an Indefinite-Metric Space
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 420-426
%V 135
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a4/
%G ru
%F TMF_2003_135_3_a4
Yu. S. Vernov; M. N. Mnatsakanova. Commutation Relations in an Indefinite-Metric Space. Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 3, pp. 420-426. http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a4/