Commutation Relations in an Indefinite-Metric Space
Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 3, pp. 420-426
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe the irreducible regular representations of the algebra of operators $a$ and $b$ defined by$[a,b]=1$ and $ba=a^+b^+$ in an arbitrary nondegenerate closed indefinite-metric space. We find the relation of this algebra to the generalized Heisenberg algebra.
Keywords: indefinite metric, Heisenberg algebra, regular representations.
@article{TMF_2003_135_3_a4,
     author = {Yu. S. Vernov and M. N. Mnatsakanova},
     title = {Commutation {Relations} in an {Indefinite-Metric} {Space}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {420--426},
     year = {2003},
     volume = {135},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a4/}
}
TY  - JOUR
AU  - Yu. S. Vernov
AU  - M. N. Mnatsakanova
TI  - Commutation Relations in an Indefinite-Metric Space
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 420
EP  - 426
VL  - 135
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a4/
LA  - ru
ID  - TMF_2003_135_3_a4
ER  - 
%0 Journal Article
%A Yu. S. Vernov
%A M. N. Mnatsakanova
%T Commutation Relations in an Indefinite-Metric Space
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 420-426
%V 135
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a4/
%G ru
%F TMF_2003_135_3_a4
Yu. S. Vernov; M. N. Mnatsakanova. Commutation Relations in an Indefinite-Metric Space. Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 3, pp. 420-426. http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a4/

[1] C. R. Putnam, Commutation Properties of Hilbert Space Operators and Related Topics, Springer, Berlin–Heidelberg–New York, 1967 | MR | Zbl

[2] F. Strocchi, A. S. Wightman, J. Math. Phys., 15 (1974), 2198 | DOI | MR

[3] G. Morchio, F. Strocchi, Ann. Inst. H. Poincaré, 33 (1980), 251 | MR

[4] F. Strocchi, Selected Topics on the General Properties of Quantum Field Theory, World Scientific, Singapore, 1993 | MR | Zbl

[5] M. Mnatsakanova, G. Morchio, F. Strocchi, Yu. Vernov, J. Math. Phys., 29 (1998), 2969 | DOI | MR

[6] M. N. Mnatsakanova, G. Morchio, Yu. S. Vernov, “Canonical commutation relations in a positive and an indefinite metric space”, Quarks-96, Proc. 9th Int. Seminar, V. 2 (Yaroslavl, Russia, May 5–11, 1996), eds. V. A. Matveev, A. A. Penin, V. A. Rubakov, A. N. Tavkhelidze, Inst. Nucl. Res., Russ. Acad. Sci., M., 1997, 51

[7] M. Chaichian, P. P. Kulish, Phys. Lett. B, 234 (1990), 72 | DOI | MR | Zbl

[8] P. P. Kulish, E. V. Damaskinsky, J. Phys. A, 23 (1990), L415 ; P. P. Kulish, ТМФ, 86 (1991), 8 | DOI | MR | Zbl | MR

[9] M. S. Plyushchay, Nucl. Phys. B, 491 (1997), 619 | DOI | MR | Zbl

[10] M. S. Plyushchay, Mod. Phys. Lett. A, 11 (1996), 2953 | DOI | MR | Zbl

[11] M. Chaichian, M. N. Mnatsakanova, Yu. S. Vernov, “Analogue of von Neumann's theorem of the $q$-oscillator algebra”, Proc. of the 15th Workshop “Problems on High Energy Physics and Field Theory” (Protvino, 1992), eds. A. P. Samokhin, G. L. Rcheulishvili, Inst. High. Energy Phys., Protvino, 1992, 126; J. Phys. A, 27 (1994), 2053 | DOI | MR | Zbl

[12] Yu. S. Vernov, M. N. Mnatsakanova, TMF, 113 (1997), 355 | DOI | MR | Zbl

[13] Yu. S. Vernov, M. N. Mnatsakanova, TMF, 125 (2000), 272 | DOI | MR | Zbl

[14] Yu. S. Vernov, M. N. Mnatsakanova, TMF, 129 (2001), 219 | DOI | MR | Zbl

[15] F. Rellich, Nachr. Akad. Wiss. Gött. Math–Phys. Kl., Math.–Phys.–Chem. Abt., 1946 (1946), 107 ; J. Dixmier, Compos. Math., 13 (1958), 263 | MR | Zbl | MR | Zbl