Constructing Solutions for the Generalized H\'enon--Heiles System Through the Painlev\'e Test
Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 3, pp. 409-419
Voir la notice de l'article provenant de la source Math-Net.Ru
The generalized Hénon–Heiles system is considered. New special solutions for two nonintegrable cases are obtained using the Painlevé test. The solutions have the form of the Laurent series depending on three parameters. One parameter determines the singularity-point location, and the other two parameters determine the coefficients in the Laurent series. For certain values of these two parameters, the series becomes the Laurent series for the known exact solutions. It is established that such solutions do not exist in other nonintegrable cases.
Keywords:
nonintegrable systems, Painlevé test, singularity analysis, polynomial potential, Hénon–Heiles system, elliptic functions.
Mots-clés : Laurent series
Mots-clés : Laurent series
@article{TMF_2003_135_3_a3,
author = {S. Yu. Vernov},
title = {Constructing {Solutions} for the {Generalized} {H\'enon--Heiles} {System} {Through} the {Painlev\'e} {Test}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {409--419},
publisher = {mathdoc},
volume = {135},
number = {3},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a3/}
}
TY - JOUR AU - S. Yu. Vernov TI - Constructing Solutions for the Generalized H\'enon--Heiles System Through the Painlev\'e Test JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2003 SP - 409 EP - 419 VL - 135 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a3/ LA - ru ID - TMF_2003_135_3_a3 ER -
S. Yu. Vernov. Constructing Solutions for the Generalized H\'enon--Heiles System Through the Painlev\'e Test. Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 3, pp. 409-419. http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a3/