Explicit Formulas for Generalized Action–Angle Variables in a Neighborhood of an Isotropic Torus and Their Application
Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 3, pp. 378-408 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Different versions of the Darboux–Weinstein theorem guarantee the existence of action–angle-type variables and the harmonic-oscillator variables in a neighborhood of isotropic tori in the phase space. The procedure for constructing these variables is reduced to solving a rather complicated system of partial differential equations. We show that this system can be integrated in quadratures, which permits reducing the problem of constructing these variables to solving a system of quadratic equations. We discuss several applications of this purely geometric fact in problems of classical and quantum mechanics.
Keywords: isotropic tori, semiclassical asymptotic approximations.
Mots-clés : action–angle variables
@article{TMF_2003_135_3_a2,
     author = {V. V. Belov and S. Yu. Dobrokhotov and V. A. Maksimov},
     title = {Explicit {Formulas} for {Generalized} {Action{\textendash}Angle} {Variables} in a {Neighborhood} of an {Isotropic} {Torus} and {Their} {Application}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {378--408},
     year = {2003},
     volume = {135},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a2/}
}
TY  - JOUR
AU  - V. V. Belov
AU  - S. Yu. Dobrokhotov
AU  - V. A. Maksimov
TI  - Explicit Formulas for Generalized Action–Angle Variables in a Neighborhood of an Isotropic Torus and Their Application
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 378
EP  - 408
VL  - 135
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a2/
LA  - ru
ID  - TMF_2003_135_3_a2
ER  - 
%0 Journal Article
%A V. V. Belov
%A S. Yu. Dobrokhotov
%A V. A. Maksimov
%T Explicit Formulas for Generalized Action–Angle Variables in a Neighborhood of an Isotropic Torus and Their Application
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 378-408
%V 135
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a2/
%G ru
%F TMF_2003_135_3_a2
V. V. Belov; S. Yu. Dobrokhotov; V. A. Maksimov. Explicit Formulas for Generalized Action–Angle Variables in a Neighborhood of an Isotropic Torus and Their Application. Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 3, pp. 378-408. http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a2/

[1] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR

[2] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972 | MR

[3] M. V. Berry, “Semiclassical mechanics of regular and irregular motion”, Chaotic Behavior of Deterministic Systems, Les Houches, Session 36 (1981), eds. G. Ioss, R. H. G. Helleman, R. Stora, North-Holland, Amsterdam, 1983, 171–271 | MR

[4] A. V. Bolsinov, A. T. Fomenko, Vvedenie v topologiyu integriruemykh gamiltonovykh sistem, Nauka, M., 1997 | MR

[5] H. W. Broer, G. B. Huitema, M. B. Sevryuk, Quasi-Periodic Motions in Families of Dynamical Systems, Lect. Notes in Math., 1645, Springer, Berlin, 1996 | MR

[6] A. D. Bryuno, Ogranichennaya zadacha trekh tel, Nauka, M., 1990 | MR | Zbl

[7] A. T. Fomenko, Simplekticheskaya geometriya. Metody i prilozheniya, Izd-vo MGU, M., 1988 | MR | Zbl

[8] M. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer, New York, 1990 | MR | Zbl

[9] V. F. Zhuravlev, D. M. Klimov, Prikladnye metody v teorii kolebanii, Nauka, M., 1988 | MR

[10] M. V. Karasev, V. P. Maslov, UMN, 39:6 (1984), 115–173 ; Нелинейные скобки Пуассона, Наука, М., 1991 | MR | Zbl | Zbl

[11] V. F. Lazutkin, KAM Theory and Semiclassical Approximations to Eigenfunctions, Ergebnisse der Mathem. und ihrer Grenzg. 3 Folge, 24, Springer, Berlin, 1993 | MR | Zbl

[12] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo MGU, M., 1965 ; В. П. Маслов, М. В. Федорюк, Квазиклассическое приближение для уравнений квантовой механики, Наука, М., 1976 | MR | MR

[13] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR

[14] M. Tabor, Khaos i neintegriruemost v nelineinoi dinamike, Editorial URSS, M., 2001

[15] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, “Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki”, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 3, ed. R. V. Gamkrelidze, VINITI, M., 1985 | MR

[16] V. V. Kozlov, Simmetrii, topologii i rezonansy v gamiltonovoi mekhanike, Izd-vo UGU, Izhevsk, 1995 | MR | Zbl

[17] V. I. Arnold, DAN SSSR, 138 (1961), 13–15 | MR | Zbl

[18] V. I. Arnold, UMN, 18:5 (1963), 13–40 | MR | Zbl

[19] E. N. Dinaburg, Ya. G. Sinai, Funkts. analiz i ego prilozh., 9:4 (1975), 8–21 | MR | Zbl

[20] A. Jorba, C. Simó, SIAM J. Math. Anal., 27 (1996), 1704–1737 ; A. Jorba, J. Villanueva, Nonlinearity, 10 (1997), 783–822 ; A. Jorba, R. de la Llave, M. Zou, “Linstedt series for lower dimensional tori”, Hamiltonian Systems with Three or More Degrees of Freedom (S'Agaro, Spain, June 1995), NATO Adv. Sci. Inst. Ser. C, Math. Phys. Sci., 533, ed. C. Simo, Kluwer, Dordrecht, 1999, 151–167 | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl

[21] S. B. Kuksin, Matem. zametki, 45:5 (1989), 38–49 | MR

[22] N. N. Nekhoroshev, Tr. Mosk. matem. ob-va, 26, 1972, 181–198 | MR | Zbl

[23] H. Rüssmann, Regul. Chaotic Dyn., 6:2 (2001), 119–204 | DOI | MR | Zbl

[24] V. V. Sokolov, A. V. Tsyganov, TMF, 131:1 (2002), 118–125 | DOI | MR | Zbl

[25] V. I. Arnold, A. B. Givental, Simplekticheskaya geometriya, RKhD, Izhevsk, 2000

[26] J. E. Marsden, A. Weinstein, Rep. Math. Phys., 5 (1974), 121–130 | DOI | MR | Zbl

[27] V. V. Belov, S. Yu. Dobrokhotov, V. A. Maksimov, Dokl. RAN, 381:4 (2001), 452–456 | MR | Zbl

[28] V. V. Belov, S. Yu. Dobrokhotov, DAN SSSR, 298:5 (1988), 1037–1042 ; ТМФ, 92:2 (1992), 215–254 | Zbl | MR

[29] V. V. Belov, O. S. Dobrokhotov, S. Yu. Dobrokhotov, Matem. zametki, 69:4 (2001), 483–514 | DOI | MR | Zbl

[30] V. P. Maslov, O. Yu. Shvedov, Metod kompleksnogo rostka v kvantovoi teorii polya, URSS, M., 1998 | MR

[31] J. Avron, B. Simon, Phys. Rev. Lett., 46:17 (1981), 1166–1168 | DOI | MR

[32] V. V. Belov, S. Yu. Dobrokhotov, V. M. Olive, Dokl. RAN, 331:2 (1993), 150–154 | Zbl

[33] V. V. Belov, V. A. Maksimov, Matem. zametki, 64:2 (1998), 297–301 ; V. V. Belov, V. A. Maksimov, Russ. J. Math. Phys., 7:3 (2000), 363–370 | DOI | MR | Zbl | MR | Zbl

[34] V. V. Belov, J. L. Volkova, Russ. J. Math. Phys., 1:4 (1993), 409–427 ; V. V. Belov, V. M. Olivè, J. L. Volkova, J. Phys. A, 28 (1995), 5799–5810 ; 5811–5829 | MR | DOI | MR | Zbl | MR | Zbl

[35] S. Yu. Dobrokhotov, V. Martínez-Olivé, A. I. Shafarevich, Russ. J. Math. Phys., 3:1 (1995), 133–138 ; С. Ю. Доброхотов, В. М. Оливе, Тр. Моск. матем. об-ва, 58, 1997, 3–87 ; S. Yu. Dobrokhotov, A. I. Shafarevich, Russ. J. Math. Phys., 5:2 (1997), 267–272 | MR | Zbl | MR | Zbl | MR | Zbl

[36] S. Yu. Dobrokhotov, A. I. Shafarevich, “Kvaziklassicheskoe kvantovanie invariantnykh izotropnykh mnogoobrazii gamiltonovykh sistem”, Topologicheskie metody v teorii gamiltonovykh sistem, eds. A. V. Bolsinov, A. T. Fomenko, A. I. Shafarevich, Faktorial, M., 1998, 41–114

[37] M. Karasev, To the Maslov theory of quasi-classical asymtotics. Examples of new global quantization formula application, Preprint ITP-89-78E, Inst. Theor. Phys., Kiev, 1989

[38] M. Karasev, Yu. Vorobjev, “Adapted connections, Hamilton dynamics, geometric phases, and quantization over isotropic submanifolds”, Coherent Transform, Quantization, and Poisson Geometry, Advances in Math. Sci., Transl. 2, 187, ed. M. Karasev, AMS, Providence, RI, 1998, 203–326 | MR

[39] M. Karasev, Yu. Vorobjev, “Linear connections for Hamilton dynamics over isotropic submanifolds”, Seminar on Dynamical Systems (St. Petersburg, Oct. 14–25 and Nov. 18–29, 1991), Progress in Nonlinear Diff. Equations and their Appl., 12, eds. S. Kukulin, V. Lazutkin, J. Poschel, Birkhauser, Basel, 1994, 235–252 | MR | Zbl

[40] M. Karasev, Yu. Vorobjev, Adv. Math., 135:2 (1998), 220–286 | DOI | MR | Zbl

[41] A. D. Krakhnov, “Postroenie asimptotiki sobstvennykh chisel operatora Laplasa, otvechayuschikh nevyrozhdennomu invariantnomu toru geodezicheskogo potoka”, Metody kachestvennoi teorii differentsialnykh uravnenii, no. 1, Izd-vo GGU, Gorkii, 1973, 66–74

[42] M. A. Poteryakhin, “The spectral series of 3-D quantum anharmonic oscillator”, Proc. Days of Diffraction (2000), S. Petersburg Univ., S. Petersburg, 2000, 127–133

[43] O. Bohigas, S. Tomsovic, D. Ullmo, Phys. Rep., 223:2 (1993), 43–133 | DOI | MR

[44] V. P. Maslov, Operatornye metody, Nauka, M., 1973 | MR