Periodic Gibbs Measures for the Ising Model with Competing Interactions
Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 3, pp. 515-523 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the Ising model with competing interactions on the second-order Cayley tree, we find the operator corresponding to the periodic Gibbs distributions with period two and determine the invariant subsets of this operator, which are used to describe the periodic Gibbs distributions.
Keywords: Cayley tree, limit Gibbs measure, periodic Gibbs measure.
Mots-clés : configuration
@article{TMF_2003_135_3_a11,
     author = {Kh. A. Nazarov and U. A. Rozikov},
     title = {Periodic {Gibbs} {Measures} for the {Ising} {Model} with {Competing} {Interactions}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {515--523},
     year = {2003},
     volume = {135},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a11/}
}
TY  - JOUR
AU  - Kh. A. Nazarov
AU  - U. A. Rozikov
TI  - Periodic Gibbs Measures for the Ising Model with Competing Interactions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 515
EP  - 523
VL  - 135
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a11/
LA  - ru
ID  - TMF_2003_135_3_a11
ER  - 
%0 Journal Article
%A Kh. A. Nazarov
%A U. A. Rozikov
%T Periodic Gibbs Measures for the Ising Model with Competing Interactions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 515-523
%V 135
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a11/
%G ru
%F TMF_2003_135_3_a11
Kh. A. Nazarov; U. A. Rozikov. Periodic Gibbs Measures for the Ising Model with Competing Interactions. Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 3, pp. 515-523. http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a11/

[1] N. N. Ganikhodzhaev, DAN RUz., 1994, no. 4, 3–5

[2] N. N. Ganikhodzhaev, U. A. Rozikov, TMF, 111:1 (1997), 109–117 | DOI | MR | Zbl

[3] U. A. Rozikov, TMF, 112:1 (1997), 170–176 | DOI | MR

[4] U. A. Rozikov, TMF, 118:1 (1999), 95–104 | DOI | MR | Zbl

[5] N. N. Ganikhodzhaev, U. A. Rozikov, UzMZh, 1995, no. 2, 36–47

[6] S. Katsura, M. Takizawa, Progr. Theor. Phys., 51:1 (1974), 82–98 | DOI