$Q$-Operator and the Drinfeld Equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 3, pp. 370-377
We show that the $TQ$ equation is satisfied by the trace over the quantum space of the product of $R$-matrices intertwining two representations of the quantum double of the Borel subalgebra of the affine algebra $U_{\text{q}}(\widehat{sl}_2)$ (the standard two-dimensional and the $N$-dimensional cyclic representations).
Keywords:
quantum groups, Baxter $Q$-operator, cyclic representations.
@article{TMF_2003_135_3_a1,
author = {A. A. Belavin and R. A. Usmanov},
title = {$Q${-Operator} and the {Drinfeld} {Equation}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {370--377},
year = {2003},
volume = {135},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a1/}
}
A. A. Belavin; R. A. Usmanov. $Q$-Operator and the Drinfeld Equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 3, pp. 370-377. http://geodesic.mathdoc.fr/item/TMF_2003_135_3_a1/
[1] R. I. Baxter, Ann. Phys., 70 (1972), 193 ; 323 ; 76 (1973), 48 | DOI | MR | Zbl | MR | DOI | Zbl
[2] V. V. Bazhanov, Yu. G. Stroganov, J. Stat. Phys., 51 (1990), 799–817 | DOI | MR
[3] V. Tarasov, Int. J. Mod. Phys. A Sup. 1B, 7 (1992), 963–975 | DOI | MR | Zbl
[4] M. Jimbo, Topics from representations of $U_{q}\bigl(\{ g\}\bigr)$ – An introductory guide to physicists, Preprint Kyoto University, Japan, 1991 | MR
[5] A. A. Belavin, A. V. Odesskii, R. A. Usmanov, New relations in the algebra of the Baxter Q-operators, E-print hep-th/0110126 | MR