@article{TMF_2003_135_2_a8,
author = {S. V. Talalov},
title = {An {Extended} {Relativistic} {Particle} {Model} with {Arbitrary} {Spin} and {Isospin}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {289--302},
year = {2003},
volume = {135},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2003_135_2_a8/}
}
S. V. Talalov. An Extended Relativistic Particle Model with Arbitrary Spin and Isospin. Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 2, pp. 289-302. http://geodesic.mathdoc.fr/item/TMF_2003_135_2_a8/
[1] E. P. Wigner, Ann. Math., 40 (1939), 149–204 | DOI | MR | Zbl
[2] I. T. Todorov, “Constraint Hamiltonian dynamics of directly interacting relativistic point particles”, Quantum Theory, Groups, Fields and Particles, , Math. Phys. Stud., 4, ed. A. O. Barut, Reidel, Dordrecht, 1983, 293–324 E-print hep-th/0202082 | MR
[3] P. A. M. Dirak, “Obobschennaya gamiltonova dinamika”, P. A. M. Dirak. K sozdaniyu kvantovoi teorii polya. Osnovnye stati 1925–1958 gg., Nauka, M., 1990, 303–328 | MR
[4] I. A. Malkin, V. I. Manko, Dinamicheskie simmetrii i kogerentnye sostoyaniya kvantovykh sistem, Nauka, M., 1979 | MR
[5] S. V. Talalov, TMF, 106:2 (1996), 218–232 | DOI | MR | Zbl
[6] S. V. Talalov, J. Phys. A, 32 (1999), 845–857 | DOI | MR | Zbl
[7] M. V. Karasev, V. P. Maslov, Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991 | MR | Zbl
[8] V. G. Makhankov, Yu. P. Rybakov, V. I. Sanyuk, UFN, 162:2 (1992), 1–61 | DOI
[9] V. V. Necterenko, On squaring the primary constraints in a generalized Hamiltonian dynamics, Preprint OIYaI E2-93-328, OIYaI, Dubna, 1993 | MR
[10] V. P. Pavlov, TMF, 104:2 (1995), 304–309 | MR | Zbl
[11] D. E. Groom at al. (Particle Data Group), Eur. Phys. J. C, 15 (2000), 1–878
[12] K. Johnson, C. B. Thorn, Phys. Rev. D, 13:7 (1976), 1934–1939 | DOI
[13] B. M. Barbashov, V. V. Nesterenko, Model relyativistskoi struny v fizike adronov, Energoatomizdat, M., 1987
[14] L. V. Laperashvili, YaF, 57:1 (1994), 134–141