An Extended Relativistic Particle Model with Arbitrary Spin and Isospin
Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 2, pp. 289-302 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a finite-dimensional Poincaré-invariant dynamical system with an additional $SU(2)$ symmetry that can be interpreted as a finite extended object evolving in Minkowski space. We show that for any value of the spin $s$, the mass spectrum $\{M\}$ of the system is determined by roots of the equation $Az_-^2+Bz_-+C+Dz_+=0$ where $z_{\pm}=a{M}^2\pm b\sqrt{s(s+1)}$ and the coefficients depend only on the state of “internal” variables. We discuss the possibility of describing certain meson and baryon states in terms of the model constructed.
Keywords: particle models, Regge trajectories, relativistic equations.
@article{TMF_2003_135_2_a8,
     author = {S. V. Talalov},
     title = {An {Extended} {Relativistic} {Particle} {Model} with {Arbitrary} {Spin} and {Isospin}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {289--302},
     year = {2003},
     volume = {135},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_135_2_a8/}
}
TY  - JOUR
AU  - S. V. Talalov
TI  - An Extended Relativistic Particle Model with Arbitrary Spin and Isospin
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 289
EP  - 302
VL  - 135
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_135_2_a8/
LA  - ru
ID  - TMF_2003_135_2_a8
ER  - 
%0 Journal Article
%A S. V. Talalov
%T An Extended Relativistic Particle Model with Arbitrary Spin and Isospin
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 289-302
%V 135
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2003_135_2_a8/
%G ru
%F TMF_2003_135_2_a8
S. V. Talalov. An Extended Relativistic Particle Model with Arbitrary Spin and Isospin. Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 2, pp. 289-302. http://geodesic.mathdoc.fr/item/TMF_2003_135_2_a8/

[1] E. P. Wigner, Ann. Math., 40 (1939), 149–204 | DOI | MR | Zbl

[2] I. T. Todorov, “Constraint Hamiltonian dynamics of directly interacting relativistic point particles”, Quantum Theory, Groups, Fields and Particles, , Math. Phys. Stud., 4, ed. A. O. Barut, Reidel, Dordrecht, 1983, 293–324 E-print hep-th/0202082 | MR

[3] P. A. M. Dirak, “Obobschennaya gamiltonova dinamika”, P. A. M. Dirak. K sozdaniyu kvantovoi teorii polya. Osnovnye stati 1925–1958 gg., Nauka, M., 1990, 303–328 | MR

[4] I. A. Malkin, V. I. Manko, Dinamicheskie simmetrii i kogerentnye sostoyaniya kvantovykh sistem, Nauka, M., 1979 | MR

[5] S. V. Talalov, TMF, 106:2 (1996), 218–232 | DOI | MR | Zbl

[6] S. V. Talalov, J. Phys. A, 32 (1999), 845–857 | DOI | MR | Zbl

[7] M. V. Karasev, V. P. Maslov, Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991 | MR | Zbl

[8] V. G. Makhankov, Yu. P. Rybakov, V. I. Sanyuk, UFN, 162:2 (1992), 1–61 | DOI

[9] V. V. Necterenko, On squaring the primary constraints in a generalized Hamiltonian dynamics, Preprint OIYaI E2-93-328, OIYaI, Dubna, 1993 | MR

[10] V. P. Pavlov, TMF, 104:2 (1995), 304–309 | MR | Zbl

[11] D. E. Groom at al. (Particle Data Group), Eur. Phys. J. C, 15 (2000), 1–878

[12] K. Johnson, C. B. Thorn, Phys. Rev. D, 13:7 (1976), 1934–1939 | DOI

[13] B. M. Barbashov, V. V. Nesterenko, Model relyativistskoi struny v fizike adronov, Energoatomizdat, M., 1987

[14] L. V. Laperashvili, YaF, 57:1 (1994), 134–141