An Extended Relativistic Particle Model with Arbitrary Spin and Isospin
Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 2, pp. 289-302
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a finite-dimensional Poincaré-invariant dynamical system with an additional $SU(2)$ symmetry that can be interpreted as a finite extended object evolving in Minkowski space. We show that for any value of the spin $s$, the mass spectrum $\{M\}$ of the system is determined by roots of the equation $Az_-^2+Bz_-+C+Dz_+=0$ where $z_{\pm}=a{M}^2\pm b\sqrt{s(s+1)}$ and the coefficients depend only on the state of “internal” variables. We discuss the possibility of describing certain meson and baryon states in terms of the model constructed.
Keywords:
particle models, Regge trajectories, relativistic equations.
@article{TMF_2003_135_2_a8,
author = {S. V. Talalov},
title = {An {Extended} {Relativistic} {Particle} {Model} with {Arbitrary} {Spin} and {Isospin}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {289--302},
publisher = {mathdoc},
volume = {135},
number = {2},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2003_135_2_a8/}
}
S. V. Talalov. An Extended Relativistic Particle Model with Arbitrary Spin and Isospin. Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 2, pp. 289-302. http://geodesic.mathdoc.fr/item/TMF_2003_135_2_a8/