Rigged Hilbert Space of Free Coherent States and $p$-Adic Numbers
Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 2, pp. 229-239

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the rigged Hilbert space of free coherent states. We prove that this rigged Hilbert space is isomorphic to the space of generalized functions over a $p$-adic disk. We discuss the relation of the described isomorphism of rigged Hilbert spaces and noncommutative geometry and show that the considered example realizes the isomorphism between the noncommutative line and the $p$-adic disk.
Keywords: $p$-adic numbers, noncommutative geometry.
@article{TMF_2003_135_2_a3,
     author = {S. V. Kozyrev},
     title = {Rigged {Hilbert} {Space} of {Free} {Coherent} {States} and $p${-Adic} {Numbers}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {229--239},
     publisher = {mathdoc},
     volume = {135},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_135_2_a3/}
}
TY  - JOUR
AU  - S. V. Kozyrev
TI  - Rigged Hilbert Space of Free Coherent States and $p$-Adic Numbers
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 229
EP  - 239
VL  - 135
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_135_2_a3/
LA  - ru
ID  - TMF_2003_135_2_a3
ER  - 
%0 Journal Article
%A S. V. Kozyrev
%T Rigged Hilbert Space of Free Coherent States and $p$-Adic Numbers
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 229-239
%V 135
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2003_135_2_a3/
%G ru
%F TMF_2003_135_2_a3
S. V. Kozyrev. Rigged Hilbert Space of Free Coherent States and $p$-Adic Numbers. Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 2, pp. 229-239. http://geodesic.mathdoc.fr/item/TMF_2003_135_2_a3/