Realization of the Universal $s\ell_q(2)$-Symmetric $R$-Operator in a Function Space for General and Exceptional Values of the Deformation Parameter
Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 2, pp. 196-223 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Based on the realization of representations of the algebra $s\ell_q(2)$ in the space of polynomials for general values of the deformation parameter $q$ and on a finite tuple of theta functions, which are a natural generalization of polynomials, we construct the eigenstates and find the related eigenvalues of the universal $R$-operator for cyclic representations corresponding to $q^N=\pm1$.
Keywords: exactly solvable models, cyclic representations, $N$th root of unity, eigenvalues.
Mots-clés : universal $R$-matrix
@article{TMF_2003_135_2_a1,
     author = {D. R. Karakhanyan},
     title = {Realization of the {Universal} $s\ell_q(2)${-Symmetric} $R${-Operator} in a {Function} {Space} for {General} and {Exceptional} {Values} of the {Deformation} {Parameter}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {196--223},
     year = {2003},
     volume = {135},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_135_2_a1/}
}
TY  - JOUR
AU  - D. R. Karakhanyan
TI  - Realization of the Universal $s\ell_q(2)$-Symmetric $R$-Operator in a Function Space for General and Exceptional Values of the Deformation Parameter
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 196
EP  - 223
VL  - 135
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_135_2_a1/
LA  - ru
ID  - TMF_2003_135_2_a1
ER  - 
%0 Journal Article
%A D. R. Karakhanyan
%T Realization of the Universal $s\ell_q(2)$-Symmetric $R$-Operator in a Function Space for General and Exceptional Values of the Deformation Parameter
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 196-223
%V 135
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2003_135_2_a1/
%G ru
%F TMF_2003_135_2_a1
D. R. Karakhanyan. Realization of the Universal $s\ell_q(2)$-Symmetric $R$-Operator in a Function Space for General and Exceptional Values of the Deformation Parameter. Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 2, pp. 196-223. http://geodesic.mathdoc.fr/item/TMF_2003_135_2_a1/

[1] L. D. Faddeev, N. Yu. Reshetikhin, L. A. Takhtadzhyan, Preprint LOMI No E-14-87, Algebra i analiz, 1, no. 1, LOMI, L., 1989 | MR

[2] S. Derkachov, D. Karakhanyan, R. Kirschner, Nucl. Phys. B, 583 (2000), 691–720 ; 618 (2001), 589–616 ; D. Karakhanyan, R. Kirschner, M. Mirumyan, Nucl. Phys. B, 636 (2002), 529–548 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[3] E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, TMF, 40 (1979), 194–220 | MR

[4] V. G. Drinfeld, Zap. nauchn. semin. LOMI, 155, 1986, 18–49 | Zbl

[5] E. K. Sklyanin, Funkts. analiz i ego prilozh., 17 (1983), 34–48 | MR | Zbl

[6] L. Alvarez-Gaume, C. Gomes, G. Sierra, Nucl. Phys. B, 330 (1990), 347–398 | DOI | MR | Zbl

[7] D. J. Korteweg, G. de Vries, “On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves”, Phil. Mag., 39:5 (1895), 422–443 | DOI | MR

[8] P. D. Lax, Commun. Pure Appl. Math., 21 (1968), 467–490 ; “Periodic solutions of the KdV equations”, Nonlinear Wave Motion, Proc. Summer Seminar (Potsdam, New York, 1972), Lect. Appl. Math., 15, ed. A. C. Newell, AMS, Providence, RI, 1974, 85–96 | DOI | MR | Zbl | MR

[9] P. P. Kulish, N. Yu. Reshetikhin, E. K. Sklyanin, Lett. Math. Phys., 5 (1981), 393–403 | DOI | MR | Zbl

[10] D. Karakhanyan, R. Kirschner, The universal $R$-operator with nonstandard deformation of conformal symmetry, in preparation

[11] L. D. Faddeev, L. A. Takhtadzhyan, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR

[12] V. Bazhanov, S. Lukyanov, A. Zamolodchikov, Commun. Math. Phys., 190 (1997), 247–278 ; J. Stat. Phys., 102 (2001), 567–576 | DOI | MR | Zbl | DOI | MR | Zbl

[13] L. D. Faddeev, “How algebraic Bethe anzatz works for integrable model”, Quantum Symmetries, Proc. of the Les Houches Summer School. Session LXIV (Les Houches, France, August 1–September 8, 1995), Horth-Holland, Amsterdam, 1998, 149 ; E-print hep-th/9605187 | MR

[14] P. Roche, D. Arnaudon, Lett. Math. Phys., 17 (1989), 295–300 ; C. De Concini, V. G. Kac, “Representations of quantum groups at roots of 1”, Operator Algebras, Unitary Representations Enveloping Algebras, and Invariant Theory, Proc. Colloq. in Honour of J. Dixmier (Paris, France, 22–26 May, 1989), Progr. Math., 92, eds. A. Connes, M. Duflo, A. Joseph, R. Rentschles, Birkhäuser, Boston, 1990, 471–506 | DOI | MR | Zbl | MR

[15] D. Mamford, Lektsii o teta-funktsiyakh, Mir, M., 1988 | MR

[16] V. V. Bazhanov, Yu. G. Stroganov, J. Stat. Phys., 59 (1990), 799–817 | DOI | MR | Zbl