Mots-clés : universal $R$-matrix
@article{TMF_2003_135_2_a1,
author = {D. R. Karakhanyan},
title = {Realization of the {Universal} $s\ell_q(2)${-Symmetric} $R${-Operator} in a {Function} {Space} for {General} and {Exceptional} {Values} of the {Deformation} {Parameter}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {196--223},
year = {2003},
volume = {135},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2003_135_2_a1/}
}
TY - JOUR AU - D. R. Karakhanyan TI - Realization of the Universal $s\ell_q(2)$-Symmetric $R$-Operator in a Function Space for General and Exceptional Values of the Deformation Parameter JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2003 SP - 196 EP - 223 VL - 135 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2003_135_2_a1/ LA - ru ID - TMF_2003_135_2_a1 ER -
%0 Journal Article %A D. R. Karakhanyan %T Realization of the Universal $s\ell_q(2)$-Symmetric $R$-Operator in a Function Space for General and Exceptional Values of the Deformation Parameter %J Teoretičeskaâ i matematičeskaâ fizika %D 2003 %P 196-223 %V 135 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2003_135_2_a1/ %G ru %F TMF_2003_135_2_a1
D. R. Karakhanyan. Realization of the Universal $s\ell_q(2)$-Symmetric $R$-Operator in a Function Space for General and Exceptional Values of the Deformation Parameter. Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 2, pp. 196-223. http://geodesic.mathdoc.fr/item/TMF_2003_135_2_a1/
[1] L. D. Faddeev, N. Yu. Reshetikhin, L. A. Takhtadzhyan, Preprint LOMI No E-14-87, Algebra i analiz, 1, no. 1, LOMI, L., 1989 | MR
[2] S. Derkachov, D. Karakhanyan, R. Kirschner, Nucl. Phys. B, 583 (2000), 691–720 ; 618 (2001), 589–616 ; D. Karakhanyan, R. Kirschner, M. Mirumyan, Nucl. Phys. B, 636 (2002), 529–548 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[3] E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, TMF, 40 (1979), 194–220 | MR
[4] V. G. Drinfeld, Zap. nauchn. semin. LOMI, 155, 1986, 18–49 | Zbl
[5] E. K. Sklyanin, Funkts. analiz i ego prilozh., 17 (1983), 34–48 | MR | Zbl
[6] L. Alvarez-Gaume, C. Gomes, G. Sierra, Nucl. Phys. B, 330 (1990), 347–398 | DOI | MR | Zbl
[7] D. J. Korteweg, G. de Vries, “On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves”, Phil. Mag., 39:5 (1895), 422–443 | DOI | MR
[8] P. D. Lax, Commun. Pure Appl. Math., 21 (1968), 467–490 ; “Periodic solutions of the KdV equations”, Nonlinear Wave Motion, Proc. Summer Seminar (Potsdam, New York, 1972), Lect. Appl. Math., 15, ed. A. C. Newell, AMS, Providence, RI, 1974, 85–96 | DOI | MR | Zbl | MR
[9] P. P. Kulish, N. Yu. Reshetikhin, E. K. Sklyanin, Lett. Math. Phys., 5 (1981), 393–403 | DOI | MR | Zbl
[10] D. Karakhanyan, R. Kirschner, The universal $R$-operator with nonstandard deformation of conformal symmetry, in preparation
[11] L. D. Faddeev, L. A. Takhtadzhyan, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR
[12] V. Bazhanov, S. Lukyanov, A. Zamolodchikov, Commun. Math. Phys., 190 (1997), 247–278 ; J. Stat. Phys., 102 (2001), 567–576 | DOI | MR | Zbl | DOI | MR | Zbl
[13] L. D. Faddeev, “How algebraic Bethe anzatz works for integrable model”, Quantum Symmetries, Proc. of the Les Houches Summer School. Session LXIV (Les Houches, France, August 1–September 8, 1995), Horth-Holland, Amsterdam, 1998, 149 ; E-print hep-th/9605187 | MR
[14] P. Roche, D. Arnaudon, Lett. Math. Phys., 17 (1989), 295–300 ; C. De Concini, V. G. Kac, “Representations of quantum groups at roots of 1”, Operator Algebras, Unitary Representations Enveloping Algebras, and Invariant Theory, Proc. Colloq. in Honour of J. Dixmier (Paris, France, 22–26 May, 1989), Progr. Math., 92, eds. A. Connes, M. Duflo, A. Joseph, R. Rentschles, Birkhäuser, Boston, 1990, 471–506 | DOI | MR | Zbl | MR
[15] D. Mamford, Lektsii o teta-funktsiyakh, Mir, M., 1988 | MR
[16] V. V. Bazhanov, Yu. G. Stroganov, J. Stat. Phys., 59 (1990), 799–817 | DOI | MR | Zbl