Euclidean 4-Simplices and Invariants of Four-Dimensional Manifolds: III.~Moves $1\leftrightarrow5$ and Related Structures
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 2, pp. 179-195
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We conclude the construction of the algebraic complex, consisting of spaces of differentials of Euclidean metric values, for four-dimensional piecewise-linear manifolds. Assuming that the complex is acyclic, we investigate how its torsion changes under rebuildings of the manifold triangulation. We first write formulas for moves $3\to3$ and $2\leftrightarrow4$ based on the results in our two previous works and then study moves $1\leftrightarrow5$ in detail. Based on this, we obtain the formula for a four-dimensional manifold invariant. As an example, we present a detailed calculation of our invariant for the sphere $S^4$;  in particular, the complex does turn out to be acyclic.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
piecewise-linear manifolds - invariants of manifolds, Pachner moves, differential identities for Euclidean simplices
Mots-clés : acyclic complexes.
                    
                  
                
                
                Mots-clés : acyclic complexes.
@article{TMF_2003_135_2_a0,
     author = {I. G. Korepanov},
     title = {Euclidean {4-Simplices} and {Invariants} of {Four-Dimensional} {Manifolds:} {III.~Moves} $1\leftrightarrow5$ and {Related} {Structures}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {179--195},
     publisher = {mathdoc},
     volume = {135},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_135_2_a0/}
}
                      
                      
                    TY - JOUR AU - I. G. Korepanov TI - Euclidean 4-Simplices and Invariants of Four-Dimensional Manifolds: III.~Moves $1\leftrightarrow5$ and Related Structures JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2003 SP - 179 EP - 195 VL - 135 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2003_135_2_a0/ LA - ru ID - TMF_2003_135_2_a0 ER -
%0 Journal Article %A I. G. Korepanov %T Euclidean 4-Simplices and Invariants of Four-Dimensional Manifolds: III.~Moves $1\leftrightarrow5$ and Related Structures %J Teoretičeskaâ i matematičeskaâ fizika %D 2003 %P 179-195 %V 135 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2003_135_2_a0/ %G ru %F TMF_2003_135_2_a0
I. G. Korepanov. Euclidean 4-Simplices and Invariants of Four-Dimensional Manifolds: III.~Moves $1\leftrightarrow5$ and Related Structures. Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 2, pp. 179-195. http://geodesic.mathdoc.fr/item/TMF_2003_135_2_a0/
