Prolongations of Vector Fields on Lie Groups and Homogeneous Spaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 1, pp. 70-81
Voir la notice de l'article provenant de la source Math-Net.Ru
We introduce the notion of the $\mathfrak{gl}(V)$-prolongation of Lie algebras of differential operators on homogeneous spaces. The $\mathfrak{gl}(V)$-prolongations are topological invariants that coincide with one-dimensional cohomologies of the corresponding Lie algebras in the case where $V$ is a homogeneous space. We apply the obtained results to the spaces $S^1$ (the Virasoro algebra) and $\mathbb R^1$.
Keywords:
Lie groups, homogeneous spaces, vector fields
Mots-clés : Lie algebra cohomologies.
Mots-clés : Lie algebra cohomologies.
@article{TMF_2003_135_1_a2,
author = {S. P. Baranovskii and I. V. Shirokov},
title = {Prolongations of {Vector} {Fields} on {Lie} {Groups} and {Homogeneous} {Spaces}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {70--81},
publisher = {mathdoc},
volume = {135},
number = {1},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2003_135_1_a2/}
}
TY - JOUR AU - S. P. Baranovskii AU - I. V. Shirokov TI - Prolongations of Vector Fields on Lie Groups and Homogeneous Spaces JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2003 SP - 70 EP - 81 VL - 135 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2003_135_1_a2/ LA - ru ID - TMF_2003_135_1_a2 ER -
S. P. Baranovskii; I. V. Shirokov. Prolongations of Vector Fields on Lie Groups and Homogeneous Spaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 1, pp. 70-81. http://geodesic.mathdoc.fr/item/TMF_2003_135_1_a2/