Prolongations of Vector Fields on Lie Groups and Homogeneous Spaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 1, pp. 70-81 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce the notion of the $\mathfrak{gl}(V)$-prolongation of Lie algebras of differential operators on homogeneous spaces. The $\mathfrak{gl}(V)$-prolongations are topological invariants that coincide with one-dimensional cohomologies of the corresponding Lie algebras in the case where $V$ is a homogeneous space. We apply the obtained results to the spaces $S^1$ (the Virasoro algebra) and $\mathbb R^1$.
Keywords: Lie groups, homogeneous spaces, vector fields
Mots-clés : Lie algebra cohomologies.
@article{TMF_2003_135_1_a2,
     author = {S. P. Baranovskii and I. V. Shirokov},
     title = {Prolongations of {Vector} {Fields} on {Lie} {Groups} and {Homogeneous} {Spaces}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {70--81},
     year = {2003},
     volume = {135},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_135_1_a2/}
}
TY  - JOUR
AU  - S. P. Baranovskii
AU  - I. V. Shirokov
TI  - Prolongations of Vector Fields on Lie Groups and Homogeneous Spaces
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 70
EP  - 81
VL  - 135
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_135_1_a2/
LA  - ru
ID  - TMF_2003_135_1_a2
ER  - 
%0 Journal Article
%A S. P. Baranovskii
%A I. V. Shirokov
%T Prolongations of Vector Fields on Lie Groups and Homogeneous Spaces
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 70-81
%V 135
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2003_135_1_a2/
%G ru
%F TMF_2003_135_1_a2
S. P. Baranovskii; I. V. Shirokov. Prolongations of Vector Fields on Lie Groups and Homogeneous Spaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 1, pp. 70-81. http://geodesic.mathdoc.fr/item/TMF_2003_135_1_a2/

[1] I. V. Shirokov, Izv. vuzov. Fizika, 40:6 (1997), 25 | MR

[2] P. Karte, “Kogomologii algebr Li”, Teoriya algebr Li. Topologiya grupp Li, Seminar “Soffus Li”, ed. E. B. Dynkin, IL, M., 1962, 32

[3] J. A. de Azcárraga, J. M. Izquierdo, J. C. Pérez Bueno, An introduction to some novel applications of Lie algebra cohomology and physics, E-print physics/9803046 | MR

[4] V. V. Zharinov, TMF, 128:2 (2001), 147 | DOI | MR | Zbl

[5] V. N. Shapovalov, Izv. vuzov. Fizika, 18:6 (1975), 57

[6] I. V. Shirokov, TMF, 123:3 (2000), 407 | DOI | MR | Zbl

[7] S. P. Baranovskii, V. V. Mikheev, I. V. Shirokov, TMF, 129:1 (2001), 3 | DOI | MR | Zbl

[8] S. P. Baranovskii, V. V. Mikheev, I. V. Shirokov, Izv. vuzov. Fizika, 43:11 (2000), 72 | MR | Zbl

[9] I. V. Shirokov, TMF, 126:3 (2001), 393 | DOI | MR | Zbl

[10] Sh. Kobayasi, K. Nomidzu, Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981 | MR

[11] D. V. Galtsov, Chastitsy i polya v okrestnosti chernykh dyr, Izd-vo MGU, M., 1986

[12] A. V. Shapovalov, I. V. Shirokov, TMF, 104:2 (1995), 195 | MR | Zbl

[13] A. V. Shapovalov, I. V. Shirokov, TMF, 106:1 (1996), 3 | DOI | MR | Zbl

[14] D. B. Fuks, Kogomologii beskonechnomernykh algebr Li, Nauka, M., 1984 | MR | Zbl