The Spectrum of the Two-Dimensional Periodic Schrödinger Operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 3, pp. 447-459 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The absence of eigenvalues (of infinite multiplicity) for the two-dimensional periodic Schrödinger operator with a variable metric is proved. The method of proof does not use the change of variables reducing the metric to a scalar form.
Keywords: Schrödinger operator, spectrum, periodic electric potential, periodic magnetic potential, variable metric.
@article{TMF_2003_134_3_a9,
     author = {L. I. Danilov},
     title = {The {Spectrum} of the {Two-Dimensional} {Periodic} {Schr\"odinger} {Operator}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {447--459},
     year = {2003},
     volume = {134},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_134_3_a9/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - The Spectrum of the Two-Dimensional Periodic Schrödinger Operator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 447
EP  - 459
VL  - 134
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_134_3_a9/
LA  - ru
ID  - TMF_2003_134_3_a9
ER  - 
%0 Journal Article
%A L. I. Danilov
%T The Spectrum of the Two-Dimensional Periodic Schrödinger Operator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 447-459
%V 134
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2003_134_3_a9/
%G ru
%F TMF_2003_134_3_a9
L. I. Danilov. The Spectrum of the Two-Dimensional Periodic Schrödinger Operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 3, pp. 447-459. http://geodesic.mathdoc.fr/item/TMF_2003_134_3_a9/

[1] P. Kuchment, S. Levendorskii, Trans. Amer. Math. Soc., 354 (2001), 537–569 | DOI | MR

[2] M. Sh. Birman, T. A. Suslina, Algebra i analiz, 11:2 (1999), 1–40 | MR | Zbl

[3] T. A. Suslina, R. G. Shterenberg, Algebra i analiz, 13:5 (2001), 197–240 | MR | Zbl

[4] T. A. Suslina, R. G. Shterenberg, Algebra i analiz, 14:2 (2002), 159–206 | MR | Zbl

[5] L. I. Danilov, TMF, 124:1 (2000), 3–17 | DOI | MR | Zbl

[6] L. I. Danilov, Matem. zametki, 73:1 (2003), 49–62 | DOI | MR | Zbl

[7] L. Friedlander, Commun. Math. Phys., 229 (2002), 49–55 | DOI | MR | Zbl

[8] M. Sh. Birman, T. A. Suslina, Algebra i analiz, 10:4 (1998), 1–36 | MR | Zbl

[9] A. Morame, J. Phys. A, 31 (1998), 7593–7601 | DOI | MR | Zbl

[10] M. Sh. Birman, T. A. Suslina, R. G. Shterenberg, Algebra i analiz, 12:6 (2000), 140–177 | MR

[11] R. G. Shterenberg, Zap. nauchn. semin. POMI, 271, 2000, 276–312 | Zbl

[12] R. G. Shterenberg, Algebra i analiz, 13:4 (2001), 196–228 | MR

[13] E. Shargorodsky, A. V. Sobolev, Quasi-conformal mappings and periodic spectral problems in dimension two, E-print math.SP/0109216 | MR

[14] L. I. Danilov, Ob absolyutnoi nepreryvnosti spektra periodicheskikh operatorov Shredingera i Diraka, II, Dep. v VINITI 09.04.01. No 916-V2001, VINITI, M., 2001

[15] L. I. Danilov, Izv. Instituta matematiki i informatiki UdGU, 2002, no. 3 (26), 3–98 | MR

[16] L. I. Danilov, TMF, 118:1 (1999), 3–14 | DOI | MR | Zbl

[17] M. Sh. Birman, T. A. Suslina, The periodic Dirac operator is absolutely continuous, Preprint ESI No 603, The Erwin Schrödinger Internat. Inst. for Math. Phys., Wien, 1998 | MR

[18] P. Kuchment, Floquet Theory for Partial Differential Equations, Birkhäuser, Basel, 1993 | MR | Zbl

[19] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, T. 4, Mir, M., 1982 | MR

[20] Z. Shen, Int. Math. Res. Notices, 1 (2001), 1–31 | DOI | Zbl

[21] L. E. Thomas, Commun. Math. Phys., 33 (1973), 335–343 | DOI | MR