Lax Representation for a Triplet of Scalar Fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 3, pp. 401-415
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct a $(3\times3)$ matrix zero-curvature representation for the system of three two-dimensional relativistically invariant scalar fields. This system belongs to the class described by the Lagrangian $L=[g_{ij}(u)u^i_x u^j_t]/2 + f(u)$, where $g_{ij}$ is the metric tensor of a three-dimensional reducible Riemannian space. We previously found all systems of this class that have higher polynomial symmetries of the orders 2, 3, 4, or 5. In this paper, we find a zero-curvature representation for one of these systems. The calculation is based on the analysis of an evolutionary system $u_t=S(u)$, where $S$ is one of the higher symmetries. This approach can also be applied to other hyperbolic systems. We also find recursion relations for a sequence of conserved currents of the triplet of scalar fields under consideration.
Keywords: Lax representation, hyperbolic systems, higher symmetries, higher conservation laws.
@article{TMF_2003_134_3_a6,
     author = {D. K. Demskoi and A. G. Meshkov},
     title = {Lax {Representation} for a {Triplet} of {Scalar} {Fields}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {401--415},
     year = {2003},
     volume = {134},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_134_3_a6/}
}
TY  - JOUR
AU  - D. K. Demskoi
AU  - A. G. Meshkov
TI  - Lax Representation for a Triplet of Scalar Fields
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 401
EP  - 415
VL  - 134
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_134_3_a6/
LA  - ru
ID  - TMF_2003_134_3_a6
ER  - 
%0 Journal Article
%A D. K. Demskoi
%A A. G. Meshkov
%T Lax Representation for a Triplet of Scalar Fields
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 401-415
%V 134
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2003_134_3_a6/
%G ru
%F TMF_2003_134_3_a6
D. K. Demskoi; A. G. Meshkov. Lax Representation for a Triplet of Scalar Fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 3, pp. 401-415. http://geodesic.mathdoc.fr/item/TMF_2003_134_3_a6/

[1] K. Pohlmeyer, Commun. Math. Phys., 46 (1976), 207–221 | DOI | MR | Zbl

[2] I. V. Cherednik, “Algebraicheskie aspekty dvumernykh kiralnykh polei, I”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 17, ed. R. V. Gamkrelidze, VINITI, M., 1981, 175–218 ; А. М. Переломов, УФН, 134:4 (1981), 577–609 ; M. A. Olshanetsky, A. M. Perelomov, Phys. Rep., 94:6 (1983), 313–404 | MR | DOI | MR | DOI | MR

[3] V. E. Zakharov, A. V. Mikhailov, ZhETF, 74:6 (1978), 1953–1973 | MR

[4] A. V. Bäcklund, Lund Universitets Arsskrift, 19 (1883)

[5] F. Lund, T. Regge, Phys. Rev. D, 14 (1976), 1524 ; F. Lund, “Solitons and geometry”, Nonlinear Equations in Physics and Mathematics, Proc. NATO Adv. Study Inst. (Istanbul, Turkey, August 1–13, 1977), NATO Adv. Study Inst. Ser., Ser. C, 40, ed. A. O. Barut, Reidel, Dordrecht, 1978, 143–175 | DOI | MR | Zbl

[6] A. Sym, “Soliton surfaces and their application (soliton geometry from spectral problems)”, Geometric Aspects of the Einstein Equations and Integrable Systems, Proc. 6th Scheveningen Conf. (Scheveningen, The Netherlands, August 26–31, 1984), Lect. Notes Phys., 239, ed. R. Martini, Springer, Berlin, 1985, 154–231 | DOI | MR

[7] A. B. Borisov, V. V. Kiselev, TMF, 54:2 (1983), 246–257 ; H. Steudel, Phys. Lett. A, 109:3 (1985), 85–86 ; F. Pempinelli, S. Potenza, J. Math. Phys., 27:12 (1986), 2861–2867 ; A. Roy Chowdhury, P. Mitra, Int. J. Theor. Phys., 28:1 (1989), 119–126 | MR | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl

[8] A. V. Balandin, O. N. Pakhareva, G. V. Potyomin, Phys. Lett. A, 283:3–4 (2001), 168–176 | DOI | MR | Zbl

[9] A. V. Mikhailov, A. B. Shabat, V. V. Sokolov, “Simmetriinyi podkhod k klassifikatsii integriruemykh uravnenii”, Integriruemost i kineticheskie uravneniya dlya solitonov, eds. V. G. Baryakhtar, V. E. Zakharov, V. M. Chernousenko, Naukova dumka, Kiev, 1990, 213–279 | MR

[10] S. I. Svinolupov, V. V. Sokolov, TMF, 100:2 (1994), 214–218 ; V. V. Sokolov, S. I. Svinolupov, Acta Appl. Math., 41 (1995), 323–339 | MR | Zbl | DOI | MR | Zbl

[11] B. S. Getmanov, “Vysshie integraly v dvumernykh modelyakh teorii polya. Kompleksnye skalyarnye polya”, Teoretiko-gruppovye metody v fizike, Tr. Mezhdunar. Seminara, T. 2 (Zvenigorod, 24–26 noyabrya, 1982), ed. M. A. Markov, Nauka, M., 1983, 333–344

[12] A. G. Meshkov, K simmetrii dvumernykh skalyarnykh polei kiralnogo tipa, Preprint No 28, TNTs SO AN SSSR, Tomsk, 1991

[13] D. K. Demskoi, A. G. Meshkov, “New integrable string-like fields in $1+1$ dimensions”, Proc. Second Int. Conf. Quantum Field Theory and Gravity (July 28 – August 2, 1997, Tomsk, Russia), eds. I. L. Bukhbinder, K. E. Osetrin, Tomsk Pedagogical University, Tomsk, 1998, 282–285

[14] A. G. Meshkov, TMF, 63:3 (1985), 323–332 | MR | Zbl

[15] O. I. Mokhov, Funkts. analiz i ego prilozh., 24:3 (1990), 86 | MR

[16] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1976 | MR

[17] S. Kumei, J. Math. Phys., 16:12 (1975), 2461–2468 ; K. M. Case, A. M. Roos, J. Math. Phys., 23:3 (1982), 392–395 ; P. Kaliappan, M. Lakshmanan, J. Math. Phys., 23:3 (1982), 456–459 | DOI | MR | DOI | MR | DOI | MR | Zbl

[18] H. D. Wahlquist, F. B. Estabrook, J. Math. Phys., 16 (1975), 1–7 ; 17 (1976), 1293–1297 | DOI | MR | Zbl | DOI | MR | Zbl

[19] A. G. Meshkov, “Instrumenty dlya simmetriinogo analiza differentsialnykh uravnenii v chastnykh proizvodnykh”, Elektronnyi zhurnal. Differents. Uravn. i Protsessy Upravleniya, 2002, no. 1 | Zbl

[20] J. M. Alberty, T. Koikawa, R. Sasaki, Physica D, 5:1 (1982), 43–74 | DOI | MR