@article{TMF_2003_134_3_a6,
author = {D. K. Demskoi and A. G. Meshkov},
title = {Lax {Representation} for a {Triplet} of {Scalar} {Fields}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {401--415},
year = {2003},
volume = {134},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2003_134_3_a6/}
}
D. K. Demskoi; A. G. Meshkov. Lax Representation for a Triplet of Scalar Fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 3, pp. 401-415. http://geodesic.mathdoc.fr/item/TMF_2003_134_3_a6/
[1] K. Pohlmeyer, Commun. Math. Phys., 46 (1976), 207–221 | DOI | MR | Zbl
[2] I. V. Cherednik, “Algebraicheskie aspekty dvumernykh kiralnykh polei, I”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 17, ed. R. V. Gamkrelidze, VINITI, M., 1981, 175–218 ; А. М. Переломов, УФН, 134:4 (1981), 577–609 ; M. A. Olshanetsky, A. M. Perelomov, Phys. Rep., 94:6 (1983), 313–404 | MR | DOI | MR | DOI | MR
[3] V. E. Zakharov, A. V. Mikhailov, ZhETF, 74:6 (1978), 1953–1973 | MR
[4] A. V. Bäcklund, Lund Universitets Arsskrift, 19 (1883)
[5] F. Lund, T. Regge, Phys. Rev. D, 14 (1976), 1524 ; F. Lund, “Solitons and geometry”, Nonlinear Equations in Physics and Mathematics, Proc. NATO Adv. Study Inst. (Istanbul, Turkey, August 1–13, 1977), NATO Adv. Study Inst. Ser., Ser. C, 40, ed. A. O. Barut, Reidel, Dordrecht, 1978, 143–175 | DOI | MR | Zbl
[6] A. Sym, “Soliton surfaces and their application (soliton geometry from spectral problems)”, Geometric Aspects of the Einstein Equations and Integrable Systems, Proc. 6th Scheveningen Conf. (Scheveningen, The Netherlands, August 26–31, 1984), Lect. Notes Phys., 239, ed. R. Martini, Springer, Berlin, 1985, 154–231 | DOI | MR
[7] A. B. Borisov, V. V. Kiselev, TMF, 54:2 (1983), 246–257 ; H. Steudel, Phys. Lett. A, 109:3 (1985), 85–86 ; F. Pempinelli, S. Potenza, J. Math. Phys., 27:12 (1986), 2861–2867 ; A. Roy Chowdhury, P. Mitra, Int. J. Theor. Phys., 28:1 (1989), 119–126 | MR | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl
[8] A. V. Balandin, O. N. Pakhareva, G. V. Potyomin, Phys. Lett. A, 283:3–4 (2001), 168–176 | DOI | MR | Zbl
[9] A. V. Mikhailov, A. B. Shabat, V. V. Sokolov, “Simmetriinyi podkhod k klassifikatsii integriruemykh uravnenii”, Integriruemost i kineticheskie uravneniya dlya solitonov, eds. V. G. Baryakhtar, V. E. Zakharov, V. M. Chernousenko, Naukova dumka, Kiev, 1990, 213–279 | MR
[10] S. I. Svinolupov, V. V. Sokolov, TMF, 100:2 (1994), 214–218 ; V. V. Sokolov, S. I. Svinolupov, Acta Appl. Math., 41 (1995), 323–339 | MR | Zbl | DOI | MR | Zbl
[11] B. S. Getmanov, “Vysshie integraly v dvumernykh modelyakh teorii polya. Kompleksnye skalyarnye polya”, Teoretiko-gruppovye metody v fizike, Tr. Mezhdunar. Seminara, T. 2 (Zvenigorod, 24–26 noyabrya, 1982), ed. M. A. Markov, Nauka, M., 1983, 333–344
[12] A. G. Meshkov, K simmetrii dvumernykh skalyarnykh polei kiralnogo tipa, Preprint No 28, TNTs SO AN SSSR, Tomsk, 1991
[13] D. K. Demskoi, A. G. Meshkov, “New integrable string-like fields in $1+1$ dimensions”, Proc. Second Int. Conf. Quantum Field Theory and Gravity (July 28 – August 2, 1997, Tomsk, Russia), eds. I. L. Bukhbinder, K. E. Osetrin, Tomsk Pedagogical University, Tomsk, 1998, 282–285
[14] A. G. Meshkov, TMF, 63:3 (1985), 323–332 | MR | Zbl
[15] O. I. Mokhov, Funkts. analiz i ego prilozh., 24:3 (1990), 86 | MR
[16] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1976 | MR
[17] S. Kumei, J. Math. Phys., 16:12 (1975), 2461–2468 ; K. M. Case, A. M. Roos, J. Math. Phys., 23:3 (1982), 392–395 ; P. Kaliappan, M. Lakshmanan, J. Math. Phys., 23:3 (1982), 456–459 | DOI | MR | DOI | MR | DOI | MR | Zbl
[18] H. D. Wahlquist, F. B. Estabrook, J. Math. Phys., 16 (1975), 1–7 ; 17 (1976), 1293–1297 | DOI | MR | Zbl | DOI | MR | Zbl
[19] A. G. Meshkov, “Instrumenty dlya simmetriinogo analiza differentsialnykh uravnenii v chastnykh proizvodnykh”, Elektronnyi zhurnal. Differents. Uravn. i Protsessy Upravleniya, 2002, no. 1 | Zbl
[20] J. M. Alberty, T. Koikawa, R. Sasaki, Physica D, 5:1 (1982), 43–74 | DOI | MR