Weak Convergence of Solutions of the Liouville Equation for Nonlinear Hamiltonian Systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 3, pp. 388-400
Voir la notice de l'article provenant de la source Math-Net.Ru
We suggest sufficient conditions for the existence of weak limits of solutions of the Liouville equation as time increases indefinitely. The presence of the weak limit of the probability distribution density leads to a new interpretation of the second law of thermodynamics for entropy increase.
Keywords:
Hamiltonian system, weak convergence, entropy.
Mots-clés : Liouville equation
Mots-clés : Liouville equation
@article{TMF_2003_134_3_a5,
author = {V. V. Kozlov and D. V. Treschev},
title = {Weak {Convergence} of {Solutions} of the {Liouville} {Equation} for {Nonlinear} {Hamiltonian} {Systems}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {388--400},
publisher = {mathdoc},
volume = {134},
number = {3},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2003_134_3_a5/}
}
TY - JOUR AU - V. V. Kozlov AU - D. V. Treschev TI - Weak Convergence of Solutions of the Liouville Equation for Nonlinear Hamiltonian Systems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2003 SP - 388 EP - 400 VL - 134 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2003_134_3_a5/ LA - ru ID - TMF_2003_134_3_a5 ER -
%0 Journal Article %A V. V. Kozlov %A D. V. Treschev %T Weak Convergence of Solutions of the Liouville Equation for Nonlinear Hamiltonian Systems %J Teoretičeskaâ i matematičeskaâ fizika %D 2003 %P 388-400 %V 134 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2003_134_3_a5/ %G ru %F TMF_2003_134_3_a5
V. V. Kozlov; D. V. Treschev. Weak Convergence of Solutions of the Liouville Equation for Nonlinear Hamiltonian Systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 3, pp. 388-400. http://geodesic.mathdoc.fr/item/TMF_2003_134_3_a5/