Weak Convergence of Solutions of the Liouville Equation for Nonlinear Hamiltonian Systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 3, pp. 388-400 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We suggest sufficient conditions for the existence of weak limits of solutions of the Liouville equation as time increases indefinitely. The presence of the weak limit of the probability distribution density leads to a new interpretation of the second law of thermodynamics for entropy increase.
Keywords: Hamiltonian system, weak convergence, entropy.
Mots-clés : Liouville equation
@article{TMF_2003_134_3_a5,
     author = {V. V. Kozlov and D. V. Treschev},
     title = {Weak {Convergence} of {Solutions} of the {Liouville} {Equation} for {Nonlinear} {Hamiltonian} {Systems}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {388--400},
     year = {2003},
     volume = {134},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_134_3_a5/}
}
TY  - JOUR
AU  - V. V. Kozlov
AU  - D. V. Treschev
TI  - Weak Convergence of Solutions of the Liouville Equation for Nonlinear Hamiltonian Systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 388
EP  - 400
VL  - 134
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_134_3_a5/
LA  - ru
ID  - TMF_2003_134_3_a5
ER  - 
%0 Journal Article
%A V. V. Kozlov
%A D. V. Treschev
%T Weak Convergence of Solutions of the Liouville Equation for Nonlinear Hamiltonian Systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 388-400
%V 134
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2003_134_3_a5/
%G ru
%F TMF_2003_134_3_a5
V. V. Kozlov; D. V. Treschev. Weak Convergence of Solutions of the Liouville Equation for Nonlinear Hamiltonian Systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 3, pp. 388-400. http://geodesic.mathdoc.fr/item/TMF_2003_134_3_a5/

[1] Dzh. V. Gibbs, Osnovnye printsipy statisticheskoi mekhaniki, Gostekhizdat, M., 1946

[2] N. N. Bogolyubov, Problema dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M.–L., 1946 | MR

[3] Dzh. Ulenbek, Dzh. Ford, Lektsii po statisticheskoi mekhanike, Mir, M., 1965

[4] A. Puankare, “Zamechaniya o kineticheskoi teorii gazov”, Izbrannye trudy, T. III, Nauka, M., 1974, 385 | MR

[5] P. Khalmosh, Lektsii po ergodicheskoi teorii, IL, M., 1959; A. Lasota, M. C. Mackey, Probabilistic properties of deterministic systems, Cambridge University Press, Cambridge, 1985 | MR | Zbl

[6] V. V. Kozlov, Dokl. RAN, 382:5 (2002), 593 | MR | Zbl

[7] V. V. Nemytskii, V. V. Stepanov, Kachestvennaya teoriya differentsialnykh uravnenii, Gostekhizdat, M.–L., 1949

[8] G. Khardi, Raskhodyaschiesya ryady, IL, M., 1951

[9] F. Riss, B. Sekefalvi-Nad, Lektsii po funktsionalnomu analizu, Mir, M., 1979 | MR

[10] G. G. Khardi, D. E. Littlvud, G. Polia, Neravenstva, IL, M., 1948

[11] V. V. Kozlov, Reg. Chaotic Dyn., 6:3 (2001), 235 | DOI | MR | Zbl

[12] M. Kats, Veroyatnost i smezhnye voprosy v fizike, Mir, M., 1965 ; И. Пригожин, И. Стенгерс, Порядок из хаоса, Прогресс, М., 1986 | Zbl

[13] N. S. Krylov, Raboty po obosnovaniyu statisticheskoi fiziki, Izd-vo AN SSSR, M.–L., 1950