Two-Frequency Autowave Processes in the Complex Ginzburg--Landau Equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 3, pp. 353-373
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the complex Ginzburg–Landau equation with zero Neumann boundary conditions on a finite interval and establish that this boundary problem (with suitably chosen parameters) has countably many stable two-dimensional self-similar tori. The case of periodic boundary conditions is also investigated.
Keywords:
Ginzburg–Landau equation, autowave process, boundary problem, self-similar torus
Mots-clés : quasiperiodic solution.
Mots-clés : quasiperiodic solution.
@article{TMF_2003_134_3_a2,
author = {A. Yu. Kolesov and N. Kh. Rozov},
title = {Two-Frequency {Autowave} {Processes} in the {Complex} {Ginzburg--Landau} {Equation}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {353--373},
publisher = {mathdoc},
volume = {134},
number = {3},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2003_134_3_a2/}
}
TY - JOUR AU - A. Yu. Kolesov AU - N. Kh. Rozov TI - Two-Frequency Autowave Processes in the Complex Ginzburg--Landau Equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2003 SP - 353 EP - 373 VL - 134 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2003_134_3_a2/ LA - ru ID - TMF_2003_134_3_a2 ER -
A. Yu. Kolesov; N. Kh. Rozov. Two-Frequency Autowave Processes in the Complex Ginzburg--Landau Equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 3, pp. 353-373. http://geodesic.mathdoc.fr/item/TMF_2003_134_3_a2/