Two-Frequency Autowave Processes in the Complex Ginzburg--Landau Equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 3, pp. 353-373

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the complex Ginzburg–Landau equation with zero Neumann boundary conditions on a finite interval and establish that this boundary problem (with suitably chosen parameters) has countably many stable two-dimensional self-similar tori. The case of periodic boundary conditions is also investigated.
Keywords: Ginzburg–Landau equation, autowave process, boundary problem, self-similar torus
Mots-clés : quasiperiodic solution.
@article{TMF_2003_134_3_a2,
     author = {A. Yu. Kolesov and N. Kh. Rozov},
     title = {Two-Frequency {Autowave} {Processes} in the {Complex} {Ginzburg--Landau} {Equation}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {353--373},
     publisher = {mathdoc},
     volume = {134},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_134_3_a2/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - Two-Frequency Autowave Processes in the Complex Ginzburg--Landau Equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 353
EP  - 373
VL  - 134
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_134_3_a2/
LA  - ru
ID  - TMF_2003_134_3_a2
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T Two-Frequency Autowave Processes in the Complex Ginzburg--Landau Equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 353-373
%V 134
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2003_134_3_a2/
%G ru
%F TMF_2003_134_3_a2
A. Yu. Kolesov; N. Kh. Rozov. Two-Frequency Autowave Processes in the Complex Ginzburg--Landau Equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 3, pp. 353-373. http://geodesic.mathdoc.fr/item/TMF_2003_134_3_a2/