Discrete Quantum Scattering Theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 3, pp. 460-486 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We formulate quantum scattering theory in terms of a discrete $L_2$-basis of eigen differentials. Using projection operators in the Hilbert space, we develop a universal method for constructing finite-dimensional analogues of the basic operators of the scattering theory: $S$- and $T$-matrices, resolvent operators, and Möller wave operators as well as the analogues of resolvent identities and the Lippmann–Schwinger equations for the $T$-matrix. The developed general formalism of the discrete scattering theory results in a very simple calculation scheme for a broad class of interaction operators.
Keywords: quantum scattering theory, wave packets, Green's function, wave operator, discretization of continuum.
Mots-clés : $T$-matrix
@article{TMF_2003_134_3_a10,
     author = {V. I. Kukulin and O. A. Rubtsova},
     title = {Discrete {Quantum} {Scattering} {Theory}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {460--486},
     year = {2003},
     volume = {134},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_134_3_a10/}
}
TY  - JOUR
AU  - V. I. Kukulin
AU  - O. A. Rubtsova
TI  - Discrete Quantum Scattering Theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 460
EP  - 486
VL  - 134
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_134_3_a10/
LA  - ru
ID  - TMF_2003_134_3_a10
ER  - 
%0 Journal Article
%A V. I. Kukulin
%A O. A. Rubtsova
%T Discrete Quantum Scattering Theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 460-486
%V 134
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2003_134_3_a10/
%G ru
%F TMF_2003_134_3_a10
V. I. Kukulin; O. A. Rubtsova. Discrete Quantum Scattering Theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 3, pp. 460-486. http://geodesic.mathdoc.fr/item/TMF_2003_134_3_a10/

[1] E. J. Heller, Phys. Rev. A, 12 (1975), 1222 | DOI

[2] B. Konya, G. Levai, Z. Papp, Phys. Rev. C, 61 (2000), 034302 | DOI

[3] G. F. Filippov, I. P. Okhrimenko, YaF, 32 (1980), 932

[4] Yu. I. Nechaev, Yu. F. Smirnov, YaF, 35 (1982), 1385 | Zbl

[5] J. M. Bang, A. I. Mazur, A. M. Shirokov, Yu. F. Smirnov, S. A. Zaytsev, Ann. Phys., 280 (2000), 299 | DOI | Zbl

[6] A. M. Shirokov, Yu. F. Smirnov, S. A. Zaitsev, TMF, 117 (1998), 227 | DOI | MR | Zbl

[7] H. A. Yamani, M. S. Abdelmonem, J. Phys. B, 30 (1997), 1633 | DOI | MR

[8] T. Vertse, P. Curutchet, R. J. Liotta, Phys. Rev. C, 42 (1990), 2605 ; T. Vertse, P. Curutchet, R. J. Liotta, J. Bang, N. Van Giai, Phys. Lett. B, 264 (1991), 1 ; R. J. Liotta, E. Maglione, N. Sandulescu, T. Vertse, Phys. Lett. B, 367 (1996), 1 | DOI | DOI | DOI

[9] E. J. Heller, W. P. Reinhardt, H. A. Yamani, J. Comput. Phys., 13 (1973), 536 | DOI | MR

[10] C. T. Corcoran, P. W. Langhoff, J. Math. Phys., 18 (1977), 651 | DOI | MR

[11] J. R. Winick, W. P. Reinhardt, Phys. Rev. A, 18 (1978), 910 | DOI

[12] I. Cacelli, V. Carravetta, A. Rizzo, J. Chem. Phys., 98 (1993), 8742 | DOI

[13] M. Cizek, J. Horacek, H.-D. Meyer, Comput. Phys. Commun., 131 (2000), 41 | DOI | Zbl

[14] G. Melnikov, J. Horacek, H. Nakamura, Comput. Phys. Commun. (to appear)

[15] O. A. Rubtsova, V. I. Kukulin, YaF, 64 (2001), 1882

[16] O. A. Rubtsova, V. I. Kukulin, TMF, 130 (2002), 64 | DOI | Zbl

[17] A. Messia, Kvantovaya mekhanika, Nauka, M., 1978 | MR

[18] R. Nyuton, Teoriya rasseyaniya voln i chastits, Mir, M., 1969 | MR

[19] S. Sunakava, Kvantovaya teoriya rasseyaniya, Mir, M., 1979 | MR

[20] D. Shanks, J. Math. Phys., 34 (1955), 1 | DOI | MR | Zbl

[21] P. Wynn, Math. Tables Aids Comput., 10 (1956), 91 | DOI | MR | Zbl

[22] S. P. Merkurev, L. D. Faddeev, Kvantovaya teoriya rasseyaniya dlya sistem neskolkikh chastits, Nauka, M., 1985 | MR

[23] H. Feshbach, Ann. Phys., 164 (1985), 398 | DOI | MR