Discrete Quantum Scattering Theory
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 3, pp. 460-486
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We formulate quantum scattering theory in terms of a discrete $L_2$-basis of eigen differentials. Using projection operators in the Hilbert space, we develop a universal method for constructing finite-dimensional analogues of the basic operators of the scattering theory: $S$- and $T$-matrices, resolvent operators, and Möller wave operators as well as the analogues of resolvent identities and the Lippmann–Schwinger equations for the $T$-matrix. The developed general formalism of the discrete scattering theory results in a very simple calculation scheme for a broad class of interaction operators.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
quantum scattering theory, wave packets, Green's function, wave operator, discretization of continuum.
Mots-clés : $T$-matrix
                    
                  
                
                
                Mots-clés : $T$-matrix
@article{TMF_2003_134_3_a10,
     author = {V. I. Kukulin and O. A. Rubtsova},
     title = {Discrete {Quantum} {Scattering} {Theory}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {460--486},
     publisher = {mathdoc},
     volume = {134},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_134_3_a10/}
}
                      
                      
                    V. I. Kukulin; O. A. Rubtsova. Discrete Quantum Scattering Theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 3, pp. 460-486. http://geodesic.mathdoc.fr/item/TMF_2003_134_3_a10/
