The Spectrum and Eigenfunctions of the Two-Dimensional Schrödinger Operator with a Magnetic Field
Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 2, pp. 243-253 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove several theorems concerning the eigenfunctions and eigenvalues of the Schrödinger operator for a large constant magnetic field.
Keywords: Schrödinger operator, magnetic field, eigenfunction, eigenvalue.
@article{TMF_2003_134_2_a6,
     author = {Yu. P. Chuburin},
     title = {The {Spectrum} and {Eigenfunctions} of the {Two-Dimensional} {Schr\"odinger} {Operator} with a {Magnetic} {Field}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {243--253},
     year = {2003},
     volume = {134},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_134_2_a6/}
}
TY  - JOUR
AU  - Yu. P. Chuburin
TI  - The Spectrum and Eigenfunctions of the Two-Dimensional Schrödinger Operator with a Magnetic Field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 243
EP  - 253
VL  - 134
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_134_2_a6/
LA  - ru
ID  - TMF_2003_134_2_a6
ER  - 
%0 Journal Article
%A Yu. P. Chuburin
%T The Spectrum and Eigenfunctions of the Two-Dimensional Schrödinger Operator with a Magnetic Field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 243-253
%V 134
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2003_134_2_a6/
%G ru
%F TMF_2003_134_2_a6
Yu. P. Chuburin. The Spectrum and Eigenfunctions of the Two-Dimensional Schrödinger Operator with a Magnetic Field. Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 2, pp. 243-253. http://geodesic.mathdoc.fr/item/TMF_2003_134_2_a6/

[1] S. M. Girvin, R. E. Pranger (Eds.), The Quantum Hall Effect, Springer, Berlin, 1987 | MR

[2] M. M. Skriganov, Tr. MIAN, 171, 1985 | MR | Zbl

[3] A. Iwatsuka, J. Math. Kyoto Univ., 23 (1983), 475 | DOI | MR | Zbl

[4] A. S. Lyskova, TMF, 65:3 (1985), 368 | MR

[5] V. A. Geiler, Algebra i analiz, 3:3 (1991), 1 | MR

[6] H. Grosse, Lett. Math. Phys., 34 (1995), 59 | DOI | MR | Zbl

[7] G. D. Raikov, Commun. Part. Diff. Equat., 23 (1998), 1583 | DOI | MR | Zbl

[8] M. Dimassi, G. D. Raikov, Spectral asymptotics for quantum Hamiltonians in strong magnetic fields, Texas Math. Physics archive. Preprint mp-arc 01-294, 2001 | MR

[9] H. D. Cornean, G. Nenciu, Commun. Math. Phys., 192 (1998), 671 | DOI | MR | Zbl

[10] H. D. Cornean, G. Nenciu, Two-dimensional magnetic schrödinger operators: width of minibands in the tight binding approximation, Preprint E.S.I. No 608, Vienna, 1998 | MR | Zbl

[11] Yu. P. Chuburin, TMF, 126 (2001), 196 | DOI | MR | Zbl

[12] Kh. Tsikon, R. Freze, V. Kirsh, B. Saimon, Operatory Shredingera s prilozheniyami k kvantovoi mekhanike i globalnoi geometrii, Mir, M., 1990 | MR

[13] A. F. Nikiforov, V. B. Uvarov, Spetsialnye funktsii matematicheskoi fiziki, Nauka, M., 1984 | MR

[14] V. F. Lazutkin, “Kvaziklassicheskaya asimptotika sobstvennykh funktsii”, Differentsialnye uravneniya s chastnymi proizvodnymi–5, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 34, ed. R. V. Gamkrelidze, VINITI, M., 1988, 135 | MR

[15] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 3. Teoriya rasseyaniya, Mir, M., 1982 | MR

[16] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 2. Garmonicheskii analiz. Samosopryazhennost, Mir, M., 1978 | MR

[17] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 1. Funktsionalnyi analiz, Mir, M., 1977 | MR

[18] F. A. Berezin, M. A. Shubin, Uravnenie Shredingera, Izd-vo MGU, M., 1983 | MR