Bifurcations of First Integrals in the Sokolov Case
Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 2, pp. 207-226 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the phase topology of a new Liouville integrable Hamiltonian system with an additional quartic integral (the Sokolov case).
Keywords: Kirchhoff equations, integrable Hamiltonian systems
Mots-clés : bifurcations of the Liouville tori.
@article{TMF_2003_134_2_a4,
     author = {P. E. Ryabov},
     title = {Bifurcations of {First} {Integrals} in the {Sokolov} {Case}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {207--226},
     year = {2003},
     volume = {134},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_134_2_a4/}
}
TY  - JOUR
AU  - P. E. Ryabov
TI  - Bifurcations of First Integrals in the Sokolov Case
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 207
EP  - 226
VL  - 134
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_134_2_a4/
LA  - ru
ID  - TMF_2003_134_2_a4
ER  - 
%0 Journal Article
%A P. E. Ryabov
%T Bifurcations of First Integrals in the Sokolov Case
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 207-226
%V 134
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2003_134_2_a4/
%G ru
%F TMF_2003_134_2_a4
P. E. Ryabov. Bifurcations of First Integrals in the Sokolov Case. Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 2, pp. 207-226. http://geodesic.mathdoc.fr/item/TMF_2003_134_2_a4/

[1] V. V. Sokolov, TMF, 129:1 (2001), 31–37 | DOI | MR | Zbl

[2] V. V. Sokolov, A generalized Kowalewski Hamiltonian and new integrable cases on $e(3)$ and $so(4)$, E-print nlin.SI/0110022 | MR

[3] M. P. Kharlamov, Topologicheskii analiz integriruemykh zadach dinamiki tverdogo tela, Izd-vo LGU, L., 1988 | MR

[4] M. P. Kharlamov, P. E. Ryabov, Reg. khaot. dinam., 2:2 (1997), 25–40 | MR | Zbl

[5] O. E. Orel, P. E. Ryabov, Reg. khaot. dinam., 3:2 (1998), 82–93 | MR

[6] O. E. Orel, P. E. Ryabov, J. Phys. A, 34 (2001), 2149–2163 | DOI | MR | Zbl

[7] A. V. Bolsinov, A. T. Fomenko, Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, T. 1, 2, Izd-vo Udm. un-ta, Izhevsk, 1999 | MR | Zbl

[8] A. V. Bolsinov, P. Rikhter, A. T. Fomenko, Matem. sb., 191:2 (2000), 3–42 | DOI | MR | Zbl

[9] V. V. Sokolov, A. V. Tsyganov, TMF, 131:1 (2002), 118–125 | DOI | MR | Zbl