Thermodynamic Formalism and Singular Invariant Measures for Critical Circle Maps
Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 2, pp. 191-206
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

As is well known, the renormalization group transformation in the space of analytic circle homeomorphisms with one cubic critical point and rotation number equal to the “golden section” has a single fixed point $T_0$. We construct the thermodynamic formalism for the critical map $T_0$ and use it to calculate the Hцlder indices for the singular invariant measure of $T_0$.
Keywords: circle homeomorphism, critical point, thermodynamic formalism
Mots-clés : Hölder index.
@article{TMF_2003_134_2_a3,
     author = {A. A. Dzhalilov},
     title = {Thermodynamic {Formalism} and {Singular} {Invariant} {Measures} for {Critical} {Circle} {Maps}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {191--206},
     year = {2003},
     volume = {134},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_134_2_a3/}
}
TY  - JOUR
AU  - A. A. Dzhalilov
TI  - Thermodynamic Formalism and Singular Invariant Measures for Critical Circle Maps
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 191
EP  - 206
VL  - 134
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_134_2_a3/
LA  - ru
ID  - TMF_2003_134_2_a3
ER  - 
%0 Journal Article
%A A. A. Dzhalilov
%T Thermodynamic Formalism and Singular Invariant Measures for Critical Circle Maps
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 191-206
%V 134
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2003_134_2_a3/
%G ru
%F TMF_2003_134_2_a3
A. A. Dzhalilov. Thermodynamic Formalism and Singular Invariant Measures for Critical Circle Maps. Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 2, pp. 191-206. http://geodesic.mathdoc.fr/item/TMF_2003_134_2_a3/

[1] R. Ostlund, D. Rand, J. Sethna, E. Sigga, Physica D, 8 (1983), 303 | DOI | MR | Zbl

[2] I. P. Kornfeld, Ya. G. Sinai, S. V. Fomin, Ergodicheskaya teoriya, Nauka, M., 1980 | MR | Zbl

[3] J. C. Yoccoz, C. R. Acad. Sci. Paris. Ser. I, 298 (1984), 141 | MR | Zbl

[4] K. M. Khanin, Chaos, 1 (1991), 181 | DOI | MR | Zbl

[5] E. B. Vul, Ya. G. Sinai, K. M. Khanin, UMN, 39:3 (1984), 3 | MR | Zbl

[6] E. de Faria, W. de Melo, Rigidity of critical circle mappings, I, Preprint No 16, IMS Stony Brook, 1997 | MR

[7] B. D. Mestel, Computer Assisted Proof of Universality for Cubic Critical Maps of the Circle with Golden Mean Rotation Number, Ph. D. Thesis, Warwick University, 1985; J.-P. Eckmann, H. Epstein, Commun. Math. Phys., 107 (1986), 213 | DOI | MR | Zbl

[8] Ya. G. Sinai, Sovremennye problemy ergodicheskoi teorii, Fizmatlit, M., 1995 | Zbl

[9] Ya. G. Sinai, UMN, 27:4 (1972), 21 ; D. Ruelle, Thermodynamic Formalism. The Mathematical Structures of Classical Equilibrium. Statistical Mechanics, Addison-Wesley, Reading, MA, 1978 | MR | Zbl | MR | Zbl

[10] R. Bouen, Metody simvolicheskoi dinamiki, Mir, M., 1979

[11] A. Chhabra, R. V. Jensen, Phys. Rev. Lett., 62 (1989), 1327 | DOI | MR

[12] J. Graczyk, G. Swiatek, Commun. Math. Phys., 157 (1993), 213 | DOI | MR | Zbl