Thermodynamic Formalism and Singular Invariant Measures for Critical Circle Maps
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 2, pp. 191-206
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			As is well known, the renormalization group transformation in the space of analytic circle homeomorphisms with one cubic critical point and rotation number equal to the “golden section” has a single fixed point $T_0$. We construct the thermodynamic formalism for the critical map $T_0$ and use it to calculate the Hцlder indices for the singular invariant measure of $T_0$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
circle homeomorphism, critical point, thermodynamic formalism, Hölder index.
                    
                  
                
                
                @article{TMF_2003_134_2_a3,
     author = {A. A. Dzhalilov},
     title = {Thermodynamic {Formalism} and {Singular} {Invariant} {Measures} for {Critical} {Circle} {Maps}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {191--206},
     publisher = {mathdoc},
     volume = {134},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_134_2_a3/}
}
                      
                      
                    TY - JOUR AU - A. A. Dzhalilov TI - Thermodynamic Formalism and Singular Invariant Measures for Critical Circle Maps JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2003 SP - 191 EP - 206 VL - 134 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2003_134_2_a3/ LA - ru ID - TMF_2003_134_2_a3 ER -
A. A. Dzhalilov. Thermodynamic Formalism and Singular Invariant Measures for Critical Circle Maps. Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 2, pp. 191-206. http://geodesic.mathdoc.fr/item/TMF_2003_134_2_a3/
