Topological Correlations in Trivial Knots: New Arguments in Favor of the Representation of a Crumpled Polymer Globule
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 2, pp. 164-184
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove the representation of a fractal crumpled structure of a strongly collapsed unknotted polymer chain. In this representation, topological considerations result in the chain developing a densely packed system of folds, which are mutually segregated at all scales. We investigate topological correlations in randomly generated knots on rectangular lattices (strips) of fixed widths. We find the probability of the spontaneous formation of a trivial knot and the probability that each finite part of a trivial knot becomes a trivial knot itself after joining its ends in a natural way. The complexity of a knot is characterized by the highest degree of the Jones–Kauffman polynomial topological invariant. We show that the knot complexity is proportional to the strip length in the case of long strips. Simultaneously, the typical complexity of a “quasi-knot”, which is a part of a trivial knot, is substantially less. Our analysis shows that the latter complexity is proportional to the square root of the strip length. The results obtained clearly indicate that the topological state of any part of a trivial knot densely filling the lattice is also close to the trivial state.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
knots, polymers, topological invariants, Brownian bridge, non-Euclidean geometry.
                    
                  
                
                
                @article{TMF_2003_134_2_a1,
     author = {O. A. Vasil'ev and S. K. Nechaev},
     title = {Topological {Correlations} in {Trivial} {Knots:} {New} {Arguments} in {Favor} of the {Representation} of a {Crumpled} {Polymer} {Globule}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {164--184},
     publisher = {mathdoc},
     volume = {134},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_134_2_a1/}
}
                      
                      
                    TY - JOUR AU - O. A. Vasil'ev AU - S. K. Nechaev TI - Topological Correlations in Trivial Knots: New Arguments in Favor of the Representation of a Crumpled Polymer Globule JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2003 SP - 164 EP - 184 VL - 134 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2003_134_2_a1/ LA - ru ID - TMF_2003_134_2_a1 ER -
%0 Journal Article %A O. A. Vasil'ev %A S. K. Nechaev %T Topological Correlations in Trivial Knots: New Arguments in Favor of the Representation of a Crumpled Polymer Globule %J Teoretičeskaâ i matematičeskaâ fizika %D 2003 %P 164-184 %V 134 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2003_134_2_a1/ %G ru %F TMF_2003_134_2_a1
O. A. Vasil'ev; S. K. Nechaev. Topological Correlations in Trivial Knots: New Arguments in Favor of the Representation of a Crumpled Polymer Globule. Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 2, pp. 164-184. http://geodesic.mathdoc.fr/item/TMF_2003_134_2_a1/
