Mots-clés : Painlevé test
@article{TMF_2003_134_1_a8,
author = {N. A. Kudryashov},
title = {On the {Fourth} {Painlev\'e} {Hierarchy}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {101--109},
year = {2003},
volume = {134},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a8/}
}
N. A. Kudryashov. On the Fourth Painlevé Hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 1, pp. 101-109. http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a8/
[1] R. Conte, “The Painlevé approach to nonlinear ordinary differential equations”, The Painlevé Property, One Century Later, CRM Series in Mathematical Physics, ed. R. Conte, Springer, Berlin, 1999, 77 | MR | Zbl
[2] M. J. Ablowitz, H. Segur, Phys. Rev. Lett., 33 (1977), 1103 ; M. J. Ablowitz, A. Ramani, H. Segur, Lett. Nuovo Cimento, 23 (1978), 333 ; J. Math. Phys., 21 (1980), 715 ; 1006 | DOI | MR | DOI | MR | DOI | MR | Zbl | Zbl
[3] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equation and Inverse Scattering, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl
[4] N. A. Kudryashov, Phys. Lett. A, 224 (1997), 353 ; 252 (1999), 173 ; P. R. Gordoa, A. Pickering, J. Math. Phys., 40 (1999), 5749 ; U. Mugan, F. Jrad, J. Nonlinear Math. Phys., 9 (2002), 282 ; J. Phys. A, 32 (1999), 7933 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[5] P. D. Lax, Commun. Pure Appl. Math., 21 (1968), 467 ; M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, Stud. Appl. Math., 53 (1974), 249 | DOI | MR | Zbl | DOI | MR | Zbl
[6] V. E. Adler, A. B. Shabat, R. I. Yamilov, TMF, 125:3 (2000), 355 | DOI | MR | Zbl
[7] V. I. Gromak, N. A. Lukashevich, Analiticheskie svoistva reshenii uravnenii Penleve, Universitetskoe, Minsk, 1990 | MR | Zbl