Isomonodromy Approach to Boundary Value Problems for the Ernst Equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 1, pp. 85-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use the isomonodromy properties of theta-functional solutions of the Ernst equation and an asymptotic expansion in the spectral parameter to establish algebraic relations, enforced by the underlying Riemann surface, between the metric functions and their derivatives. These relations determine which classes of boundary value problems can be solved on a given surface. The situation on lower-genus Riemann surfaces is studied in detail.
Keywords: general relativity theory
Mots-clés : exact solutions, isomonodromy deformations.
@article{TMF_2003_134_1_a7,
     author = {C. Klein},
     title = {Isomonodromy {Approach} to {Boundary} {Value} {Problems} for the {Ernst} {Equation}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {85--100},
     year = {2003},
     volume = {134},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a7/}
}
TY  - JOUR
AU  - C. Klein
TI  - Isomonodromy Approach to Boundary Value Problems for the Ernst Equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 85
EP  - 100
VL  - 134
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a7/
LA  - ru
ID  - TMF_2003_134_1_a7
ER  - 
%0 Journal Article
%A C. Klein
%T Isomonodromy Approach to Boundary Value Problems for the Ernst Equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 85-100
%V 134
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a7/
%G ru
%F TMF_2003_134_1_a7
C. Klein. Isomonodromy Approach to Boundary Value Problems for the Ernst Equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 1, pp. 85-100. http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a7/

[1] D. Maison, Phys. Rev. Lett., 41 (1978), 521 | DOI | MR

[2] V. A. Belinskii, V. E. Zakharov, ZhETF, 75 (1978), 1955 | MR

[3] F. J. Ernst, Phys. Rev., 167 (1968), 1175 | DOI

[4] C. Klein, O. Richter, Phys. Rev. D, 57 (1998), 857 | DOI | MR

[5] D. A. Korotkin, TMF, 77 (1988), 25 | MR

[6] G. Neugebauer, R. Meinel, Phys. Rev. Lett., 75 (1995), 3046 | DOI | MR | Zbl

[7] C. Klein, O. Richter, Phys. Rev. Lett., 83 (1999), 2884 | DOI

[8] C. Klein, Phys. Rev. D, 63 (2000), 064033 | DOI

[9] D. Korotkin, H. Nicolai, Nucl. Phys. B, 475 (1996), 397 | DOI | MR | Zbl

[10] D. A. Korotkin, V. B. Matveev, Funkts. analiz i ego prilozh., 34:4 (2000), 18 | DOI | MR | Zbl

[11] D. Kramer, H. Stephani, E. Herlt, M. MacCallum, Exact Solutions of Einstein's Field Equations, Cambridge Univ. Press, Cambridge, 1980 | MR | Zbl

[12] J. D. Fay, Theta-functions on Riemann surfaces, Lect. Notes in Math., 352, Springer, Berlin, 1973 | DOI | MR | Zbl

[13] C. Klein, O. Richter, Phys. Rev. D, 58 (1998), 124018 | DOI | MR

[14] E. D. Belokolos, A. I. Bobenko, V. Z. Enolskii, A. R. Its, V. B. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations, Springer, Berlin, 1994