Classical Symmetry Reductions of the Schwarz–Korteweg–de Vries Equation in $2+1$ Dimensions
Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 1, pp. 74-84
Cet article a éte moissonné depuis la source Math-Net.Ru
Classical reductions of a $(2+1)$-dimensional integrable Schwarz–Korteweg–de Vries equation are classified. These reductions to systems of partial differential equations in $1+1$ dimensions admit symmetries that lead to further reductions, i.e., to systems of ordinary differential equations. All these systems have been reduced to second-order ordinary differential equations. We present some particular solutions involving two arbitrary functions.
Keywords:
partial differential equations, Lie symmetries.
@article{TMF_2003_134_1_a6,
author = {M. L. Gandarias and M. S. Bruz\'on and J. Ram{\'\i}res},
title = {Classical {Symmetry} {Reductions} of the {Schwarz{\textendash}Korteweg{\textendash}de~Vries} {Equation} in $2+1$ {Dimensions}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {74--84},
year = {2003},
volume = {134},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a6/}
}
TY - JOUR AU - M. L. Gandarias AU - M. S. Bruzón AU - J. Ramíres TI - Classical Symmetry Reductions of the Schwarz–Korteweg–de Vries Equation in $2+1$ Dimensions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2003 SP - 74 EP - 84 VL - 134 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a6/ LA - ru ID - TMF_2003_134_1_a6 ER -
%0 Journal Article %A M. L. Gandarias %A M. S. Bruzón %A J. Ramíres %T Classical Symmetry Reductions of the Schwarz–Korteweg–de Vries Equation in $2+1$ Dimensions %J Teoretičeskaâ i matematičeskaâ fizika %D 2003 %P 74-84 %V 134 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a6/ %G ru %F TMF_2003_134_1_a6
M. L. Gandarias; M. S. Bruzón; J. Ramíres. Classical Symmetry Reductions of the Schwarz–Korteweg–de Vries Equation in $2+1$ Dimensions. Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 1, pp. 74-84. http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a6/
[1] K. Toda, S. Yu, J. Math. Phys., 41 (2000), 4747 | DOI | MR | Zbl
[2] F. Calogero, Lett. Nuovo Cimento, 14 (1975), 43 | MR
[3] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl
[4] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR
[5] B. Champagne, W. Hereman, P. Winternitz, Comp. Phys. Comm., 66 (1991), 319 | DOI | MR | Zbl
[6] E. L. Ains, Obyknovennye differentsialnye uravneniya, DNTVU, Kharkov, 1939 | MR