Quantum Integrable and Nonintegrable Nonlinear Schr\"odinger Models for Realizable Bose--Einstein Condensation in $d+1$ Dimensions $(d=1,2,3)$
Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 1, pp. 55-73

Voir la notice de l'article provenant de la source Math-Net.Ru

We evaluate finite-temperature equilibrium correlators корреляторы $\langle T_\tau \hat{\psi}({\bold r}_1) \hat{\psi}^\dagger({\bold r}_2)\rangle$ for thermal time $\tau$ ordered Bose fields полей $\hat{\psi}$, $\hat{\psi}^\dagger$ to good approximations by new methods of functional integration in $d=1,2,3$ dimensions and with the trap potentials $V({\bold r})\not\equiv0$. As in the translationally invariant cases, asymptotic behaviors fall as $R^{-1}\equiv|{\bold r}_1-{\bold r}_2|^{-1}$ to longer-range condensate values for and only for $d=3$ in agreement with experimental observations; but there are generally significant corrections also depending on ${\bold S}\equiv({\bold r}_1+{\bold r}_2)/2$ due to the presence of the traps. For $d=1$, we regain the exact translationally invariant results as the trap frequencies $\Omega\rightarrow0$. In analyzing the attractive cases, we investigate the time-dependent $c$-number Gross–Pitaevskii (GP) equation with the trap potential for a generalized nonlinearity $-2c\psi|\psi|^{2n}$ and $c0$. For $n=1$, the stationary form of the GP equation appears in the steepest-descent approximation of the functional integrals. We show that collapse in the sense of Zakharov can occur for $c0$ and $nd\geq2$ and a functional $E_{\textup{NLS}}[\psi]\leq0$ even when $V({\bold r})\not\equiv0$. The singularities typically arise as $\delta$-functions centered on the trap origin ${\bold r}={\bold 0}$.
Keywords: Bose–Einstein condensation, functional integral method, quantum model of nonlinear Schrödinger equation, finite-temperature theory, magnetic traps, two-point correlations, coherence functions.
@article{TMF_2003_134_1_a5,
     author = {R. K. Bullough and N. M. Bogolyubov and V. S. Kapitonov and K. L. Malyshev and I. Timonen and A. V. Rybin and G. G. Varzugin and M. Lindberg},
     title = {Quantum {Integrable} and {Nonintegrable} {Nonlinear} {Schr\"odinger} {Models} for {Realizable} {Bose--Einstein} {Condensation} in $d+1$ {Dimensions} $(d=1,2,3)$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {55--73},
     publisher = {mathdoc},
     volume = {134},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a5/}
}
TY  - JOUR
AU  - R. K. Bullough
AU  - N. M. Bogolyubov
AU  - V. S. Kapitonov
AU  - K. L. Malyshev
AU  - I. Timonen
AU  - A. V. Rybin
AU  - G. G. Varzugin
AU  - M. Lindberg
TI  - Quantum Integrable and Nonintegrable Nonlinear Schr\"odinger Models for Realizable Bose--Einstein Condensation in $d+1$ Dimensions $(d=1,2,3)$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 55
EP  - 73
VL  - 134
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a5/
LA  - ru
ID  - TMF_2003_134_1_a5
ER  - 
%0 Journal Article
%A R. K. Bullough
%A N. M. Bogolyubov
%A V. S. Kapitonov
%A K. L. Malyshev
%A I. Timonen
%A A. V. Rybin
%A G. G. Varzugin
%A M. Lindberg
%T Quantum Integrable and Nonintegrable Nonlinear Schr\"odinger Models for Realizable Bose--Einstein Condensation in $d+1$ Dimensions $(d=1,2,3)$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 55-73
%V 134
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a5/
%G ru
%F TMF_2003_134_1_a5
R. K. Bullough; N. M. Bogolyubov; V. S. Kapitonov; K. L. Malyshev; I. Timonen; A. V. Rybin; G. G. Varzugin; M. Lindberg. Quantum Integrable and Nonintegrable Nonlinear Schr\"odinger Models for Realizable Bose--Einstein Condensation in $d+1$ Dimensions $(d=1,2,3)$. Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 1, pp. 55-73. http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a5/