Quantum Integrable and Nonintegrable Nonlinear Schr\"odinger Models for Realizable Bose--Einstein Condensation in $d+1$ Dimensions $(d=1,2,3)$
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 1, pp. 55-73
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We evaluate finite-temperature equilibrium correlators корреляторы $\langle T_\tau \hat{\psi}({\bold r}_1) \hat{\psi}^\dagger({\bold r}_2)\rangle$ for thermal time $\tau$ ordered Bose fields полей $\hat{\psi}$, $\hat{\psi}^\dagger$ to good approximations by new methods of functional integration in $d=1,2,3$ dimensions and with the trap potentials $V({\bold r})\not\equiv0$. As in the translationally invariant cases, asymptotic behaviors fall as $R^{-1}\equiv|{\bold r}_1-{\bold r}_2|^{-1}$ to longer-range condensate values for and only for $d=3$ in agreement with experimental observations; but there are generally significant corrections also depending on ${\bold S}\equiv({\bold r}_1+{\bold r}_2)/2$ due to the presence of the traps. For $d=1$, we regain the exact translationally invariant results as the trap frequencies $\Omega\rightarrow0$. In analyzing the attractive cases, we investigate the time-dependent $c$-number Gross–Pitaevskii (GP) equation with the trap potential for a generalized nonlinearity $-2c\psi|\psi|^{2n}$ and $c0$. For $n=1$, the stationary form of the GP equation appears in the steepest-descent approximation of the functional integrals. We show that collapse in the sense of Zakharov can occur for $c0$ and $nd\geq2$ and a functional $E_{\textup{NLS}}[\psi]\leq0$ even when $V({\bold r})\not\equiv0$. The singularities typically arise as $\delta$-functions centered on the trap origin ${\bold r}={\bold 0}$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Bose–Einstein condensation, functional integral method, quantum model of nonlinear Schrödinger equation, finite-temperature theory, magnetic traps, two-point correlations, coherence functions.
                    
                  
                
                
                @article{TMF_2003_134_1_a5,
     author = {R. K. Bullough and N. M. Bogolyubov and V. S. Kapitonov and K. L. Malyshev and I. Timonen and A. V. Rybin and G. G. Varzugin and M. Lindberg},
     title = {Quantum {Integrable} and {Nonintegrable} {Nonlinear} {Schr\"odinger} {Models} for {Realizable} {Bose--Einstein} {Condensation} in $d+1$ {Dimensions} $(d=1,2,3)$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {55--73},
     publisher = {mathdoc},
     volume = {134},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a5/}
}
                      
                      
                    TY - JOUR AU - R. K. Bullough AU - N. M. Bogolyubov AU - V. S. Kapitonov AU - K. L. Malyshev AU - I. Timonen AU - A. V. Rybin AU - G. G. Varzugin AU - M. Lindberg TI - Quantum Integrable and Nonintegrable Nonlinear Schr\"odinger Models for Realizable Bose--Einstein Condensation in $d+1$ Dimensions $(d=1,2,3)$ JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2003 SP - 55 EP - 73 VL - 134 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a5/ LA - ru ID - TMF_2003_134_1_a5 ER -
%0 Journal Article %A R. K. Bullough %A N. M. Bogolyubov %A V. S. Kapitonov %A K. L. Malyshev %A I. Timonen %A A. V. Rybin %A G. G. Varzugin %A M. Lindberg %T Quantum Integrable and Nonintegrable Nonlinear Schr\"odinger Models for Realizable Bose--Einstein Condensation in $d+1$ Dimensions $(d=1,2,3)$ %J Teoretičeskaâ i matematičeskaâ fizika %D 2003 %P 55-73 %V 134 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a5/ %G ru %F TMF_2003_134_1_a5
R. K. Bullough; N. M. Bogolyubov; V. S. Kapitonov; K. L. Malyshev; I. Timonen; A. V. Rybin; G. G. Varzugin; M. Lindberg. Quantum Integrable and Nonintegrable Nonlinear Schr\"odinger Models for Realizable Bose--Einstein Condensation in $d+1$ Dimensions $(d=1,2,3)$. Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 1, pp. 55-73. http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a5/
