Duality of Spectral Curves Arising in Two-Matrix Models
Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 1, pp. 32-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the two-matrix model with the measure given by the exponential of a sum of polynomials in two different variables. We derive a sequence of pairs of dual finite-size systems of ODEs for the corresponding biorthonormal polynomials. We prove an inverse theorem, which shows how to reconstruct such measures from pairs of semi-infinite finite-band matrices, which define the recursion relations and satisfy the string equation. In the limit $N\to\infty$, we prove that the obtained dual systems have the same spectral curve.
Keywords: random matrix model, asymptotic analysis, ODE duality.
@article{TMF_2003_134_1_a3,
     author = {M. Bertola and B. Eynard and J. Harnad},
     title = {Duality of {Spectral} {Curves} {Arising} in {Two-Matrix} {Models}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {32--45},
     year = {2003},
     volume = {134},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a3/}
}
TY  - JOUR
AU  - M. Bertola
AU  - B. Eynard
AU  - J. Harnad
TI  - Duality of Spectral Curves Arising in Two-Matrix Models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 32
EP  - 45
VL  - 134
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a3/
LA  - ru
ID  - TMF_2003_134_1_a3
ER  - 
%0 Journal Article
%A M. Bertola
%A B. Eynard
%A J. Harnad
%T Duality of Spectral Curves Arising in Two-Matrix Models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 32-45
%V 134
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a3/
%G ru
%F TMF_2003_134_1_a3
M. Bertola; B. Eynard; J. Harnad. Duality of Spectral Curves Arising in Two-Matrix Models. Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 1, pp. 32-45. http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a3/

[1] J. M. Daul, V. Kazakov, I. K. Kostov, Nucl. Phys. B, 409 (1993), 311 ; E-print hep-th/9303093 | DOI | MR | Zbl

[2] N. M. Ercolani, K. T.-R. McLaughlin, Physica D, 152–153 (2001), 232 | DOI | MR | Zbl

[3] B. Eynard, Nucl. Phys. B, 506 (1997), 633 ; E-print cond-mat/9707005 | DOI | MR | Zbl

[4] B. Eynard, J. Phys. A, 31 (1998), 8081 ; E-print cond-mat/9801075 | DOI | MR | Zbl

[5] B. Eynard, M. L. Mehta, J. Phys. A, 31 (1998), 4449 ; E-print cond-mat/9710230 | DOI | MR | Zbl

[6] K. Ueno, K. Takasaki, Adv. Stud. Pure Math., 4, 1984, 1 | MR | Zbl

[7] M. Adler, P. Van Moerbeke, Commun. Pure Appl. Math., 50 (1997), 241 ; Ann. Math., 149 (1999), 921 | 3.0.CO;2-B class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl | DOI | MR | Zbl

[8] M. Bertola, B. Eynard, J. Harnad, Commun. Math. Phys., 229 (2002), 73 ; E-print nlin.SI/0108049 | DOI | MR | Zbl

[9] M. Bertola, B. Eynard, J. Harnad, J. Hurtubise, The geometric meaning of dual isomonodromy tau functions appearing in $2$-matrix models, in preparation

[10] A. Userkesm, S. P. Norset, Constr. Approx., 5 (1989), 437 | DOI | MR

[11] I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Birkhäuser, Boston, MA, 1994 | MR