Duality of Spectral Curves Arising in Two-Matrix Models
Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 1, pp. 32-45

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the two-matrix model with the measure given by the exponential of a sum of polynomials in two different variables. We derive a sequence of pairs of dual finite-size systems of ODEs for the corresponding biorthonormal polynomials. We prove an inverse theorem, which shows how to reconstruct such measures from pairs of semi-infinite finite-band matrices, which define the recursion relations and satisfy the string equation. In the limit $N\to\infty$, we prove that the obtained dual systems have the same spectral curve.
Keywords: random matrix model, asymptotic analysis, ODE duality.
@article{TMF_2003_134_1_a3,
     author = {M. Bertola and B. Eynard and J. Harnad},
     title = {Duality of {Spectral} {Curves} {Arising} in {Two-Matrix} {Models}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {32--45},
     publisher = {mathdoc},
     volume = {134},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a3/}
}
TY  - JOUR
AU  - M. Bertola
AU  - B. Eynard
AU  - J. Harnad
TI  - Duality of Spectral Curves Arising in Two-Matrix Models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 32
EP  - 45
VL  - 134
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a3/
LA  - ru
ID  - TMF_2003_134_1_a3
ER  - 
%0 Journal Article
%A M. Bertola
%A B. Eynard
%A J. Harnad
%T Duality of Spectral Curves Arising in Two-Matrix Models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 32-45
%V 134
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a3/
%G ru
%F TMF_2003_134_1_a3
M. Bertola; B. Eynard; J. Harnad. Duality of Spectral Curves Arising in Two-Matrix Models. Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 1, pp. 32-45. http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a3/