Keywords: lattice mKdV equation, Melnikov analysis.
@article{TMF_2003_134_1_a11,
author = {V. M. Rotos},
title = {Homoclinic {Orbits} for a {Perturbed} {Lattice} {Modified} {KdV} {Equation}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {135--147},
year = {2003},
volume = {134},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a11/}
}
V. M. Rotos. Homoclinic Orbits for a Perturbed Lattice Modified KdV Equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 1, pp. 135-147. http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a11/
[1] D. W. McLaughlin, E. A. Overman, “Whiskered tori for integrable PDE's: chaotic behavior in near integrable PDE's”, Surveys in Applied Mathematics, 1, eds. J. B. Keller et al., Plenum, New York, 1995, 83–203 | DOI | MR | Zbl
[2] N. Ercolani, M. G. Forest, D. W. McLaughlin, Physica D, 43 (1990), 349–384 | DOI | MR | Zbl
[3] V. M. Rothos, Preprint, 2001
[4] Y. Li, D. W. McLaughlin, Commun. Math. Phys., 162:1 (1994), 175–214 | DOI | MR | Zbl
[5] F. W. Nijhoff, H. W. Capel, Acta Appl. Math., 39 (1995), 133–158 | DOI | MR | Zbl
[6] V. K. Melnikov, Tr. Mosk. mat. ob-va, 12, 1965, 3–52
[7] V. M. Rothos, Dyn. Syst., 16:3 (2001), 279–302 | DOI | MR | Zbl
[8] H. W. Capel, F. W. Nijhoff, V. G. Papageorgiou, Phys. Lett. A, 155 (1991), 377–387 | DOI | MR
[9] V. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer Series in Nonlinear Dynamics, 5, Springer, New York, 1991 | DOI | MR