Homoclinic Orbits for a Perturbed Lattice Modified KdV Equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 1, pp. 135-147 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We establish the splitting of homoclinic orbits for a near-integrable lattice modified KdV (mKdV) equation with periodic boundary conditions. We use the Bäcklund transformation to construct homoclinic orbits of the lattice mKdV equation. We build the Melnikov function with the gradient of the invariant defined through the discrete Floquet discriminant evaluated at critical points. The criteria for the persistence of homoclinic solutions of the perturbed lattice mKdV equation are established.
Mots-clés : homoclinic solutions
Keywords: lattice mKdV equation, Melnikov analysis.
@article{TMF_2003_134_1_a11,
     author = {V. M. Rotos},
     title = {Homoclinic {Orbits} for a {Perturbed} {Lattice} {Modified} {KdV} {Equation}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {135--147},
     year = {2003},
     volume = {134},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a11/}
}
TY  - JOUR
AU  - V. M. Rotos
TI  - Homoclinic Orbits for a Perturbed Lattice Modified KdV Equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 135
EP  - 147
VL  - 134
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a11/
LA  - ru
ID  - TMF_2003_134_1_a11
ER  - 
%0 Journal Article
%A V. M. Rotos
%T Homoclinic Orbits for a Perturbed Lattice Modified KdV Equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 135-147
%V 134
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a11/
%G ru
%F TMF_2003_134_1_a11
V. M. Rotos. Homoclinic Orbits for a Perturbed Lattice Modified KdV Equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 1, pp. 135-147. http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a11/

[1] D. W. McLaughlin, E. A. Overman, “Whiskered tori for integrable PDE's: chaotic behavior in near integrable PDE's”, Surveys in Applied Mathematics, 1, eds. J. B. Keller et al., Plenum, New York, 1995, 83–203 | DOI | MR | Zbl

[2] N. Ercolani, M. G. Forest, D. W. McLaughlin, Physica D, 43 (1990), 349–384 | DOI | MR | Zbl

[3] V. M. Rothos, Preprint, 2001

[4] Y. Li, D. W. McLaughlin, Commun. Math. Phys., 162:1 (1994), 175–214 | DOI | MR | Zbl

[5] F. W. Nijhoff, H. W. Capel, Acta Appl. Math., 39 (1995), 133–158 | DOI | MR | Zbl

[6] V. K. Melnikov, Tr. Mosk. mat. ob-va, 12, 1965, 3–52

[7] V. M. Rothos, Dyn. Syst., 16:3 (2001), 279–302 | DOI | MR | Zbl

[8] H. W. Capel, F. W. Nijhoff, V. G. Papageorgiou, Phys. Lett. A, 155 (1991), 377–387 | DOI | MR

[9] V. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer Series in Nonlinear Dynamics, 5, Springer, New York, 1991 | DOI | MR