Period Map for Nonlinear Pulses in Optical Dispersion-Managed Fibers
Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 1, pp. 124-134
Voir la notice de l'article provenant de la source Math-Net.Ru
We derive a simple recursion formula for the amplitude and chirp of the optical pulse propagating over a dispersion-managed fiber with zero mean dispersion. We neglect dissipation and assume the dispersion to be constant along the adjacent legs of the waveguide, thus providing the applicability of the integrable NLS models within each leg. Choosing the legs to be long enough to ensure the formation of a self-similar profile, we apply the well-known asymptotic formulas for the nonsoliton initial pulses. Matching them through the interfaces of the legs, we obtain the recursion formulas for the pulse amplitude and the chirp. Our analytic results are well justified by numerical simulations.
Mots-clés :
NLS equation, dispersion management
Keywords: dispersion-managed soliton, inverse scattering transform, long-time asymptotics.
Keywords: dispersion-managed soliton, inverse scattering transform, long-time asymptotics.
@article{TMF_2003_134_1_a10,
author = {A. V. Mikhailov and V. Yu. Novokshenov},
title = {Period {Map} for {Nonlinear} {Pulses} in {Optical} {Dispersion-Managed} {Fibers}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {124--134},
publisher = {mathdoc},
volume = {134},
number = {1},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a10/}
}
TY - JOUR AU - A. V. Mikhailov AU - V. Yu. Novokshenov TI - Period Map for Nonlinear Pulses in Optical Dispersion-Managed Fibers JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2003 SP - 124 EP - 134 VL - 134 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a10/ LA - ru ID - TMF_2003_134_1_a10 ER -
A. V. Mikhailov; V. Yu. Novokshenov. Period Map for Nonlinear Pulses in Optical Dispersion-Managed Fibers. Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 1, pp. 124-134. http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a10/