Discrete $Z^{\gamma}$: Embedded Circle Patterns with the Square Grid Combinatorics and Discrete Painlevé Equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 1, pp. 5-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study a discrete analogue of the holomorphic map $z^{\gamma}$. It is given by Schramm's circle pattern with the square grid combinatorics. We show that the corresponding circle patterns are embedded and described by special separatrix solutions of discrete Painlevé equations. We establish global properties of these solutions and of the discrete $z^{\gamma}$.
Keywords: circle patterns
Mots-clés : discrete conformal map, discrete Painlevé equation.
@article{TMF_2003_134_1_a1,
     author = {S. I. Agafonov},
     title = {Discrete $Z^{\gamma}$: {Embedded} {Circle} {Patterns} with the {Square} {Grid} {Combinatorics} and {Discrete} {Painlev\'e} {Equations}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {5--17},
     year = {2003},
     volume = {134},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a1/}
}
TY  - JOUR
AU  - S. I. Agafonov
TI  - Discrete $Z^{\gamma}$: Embedded Circle Patterns with the Square Grid Combinatorics and Discrete Painlevé Equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 5
EP  - 17
VL  - 134
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a1/
LA  - ru
ID  - TMF_2003_134_1_a1
ER  - 
%0 Journal Article
%A S. I. Agafonov
%T Discrete $Z^{\gamma}$: Embedded Circle Patterns with the Square Grid Combinatorics and Discrete Painlevé Equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 5-17
%V 134
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a1/
%G ru
%F TMF_2003_134_1_a1
S. I. Agafonov. Discrete $Z^{\gamma}$: Embedded Circle Patterns with the Square Grid Combinatorics and Discrete Painlevé Equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 1, pp. 5-17. http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a1/

[1] W. P. Thurston, “The finite Riemann mapping theorem”, Talk delivered at “Symposium on the Occasion of the Proof of the Bieberbach Conjecture” (Purdue University, West Lafayette, Ind., USA, March, 1985) | MR

[2] Z.-X. He, Ann. Math., 149 (1999), 1–33 | DOI | MR | Zbl

[3] O. Schramm, Duke Math. J., 86 (1997), 347–389 | DOI | MR | Zbl

[4] A. I. Bobenko, T. Hoffmann, Yu. B. Suris, Int. Math. Res. Notices, 3 (2002), 111–164 | DOI | MR | Zbl

[5] A. I. Bobenko, T. Hoffmann, Hexagonal circle patterns and integrable systems. Patterns with constant angles, http://xxx.lanl.gov/abs/math.CV/0109018 | MR

[6] B. Rodin, D. Sullivan, J. Diff. Geom., 26 (1987), 349–360 | DOI | MR | Zbl

[7] Z.-X. He, O. Schramm, Acta. Math., 180 (1998), 219–245 | DOI | MR | Zbl

[8] A. F. Beardon, K. Stephenson, Indiana Univ. Math. J., 39:4 (1990), 1383–1425 | DOI | MR | Zbl

[9] A. Marden, B. Rodin, “On Thurston's formulation and proof of Andreev's theorem”, Computational Methods and Function Theory. Proc. of Conf. (Valparaiso, Chile, March 13–18, 1989), Lect. Notes Math., 1435, eds. St. Ruscheweyh et al., Springer, Berlin, 1990, 103–115 | DOI | MR

[10] A. Bobenko, U. Pinkall, “Discretization of surfaces and integrable systems”, Discrete Integrable Geometry and Physics, eds. A. I. Bobenko, R. Seiler, Oxford Univ. Press, Oxford, 1999, 3–8 | MR

[11] A. Zabrodin, A survey of Hirota's difference equations, E-print solv-int/9704001

[12] T. Dubejko, K. Stephenson, Experimental Math., 4:4 (1995), 307–348 | DOI | MR | Zbl

[13] K. Callahan, B. Rodin, Complex Variables, 21 (1993), 171–177 | DOI | MR | Zbl

[14] A. I. Bobenko, T. Hoffmann, Experimental Math., 10:1 (2001), 141–150 | DOI | MR | Zbl

[15] S. I. Agafonov, A. I. Bobenko, Int. Math. Res. Notices, 4 (2000), 165–193 | DOI | MR | Zbl

[16] A. Bobenko, U. Pinkall, J. Reine Angew. Math., 475 (1996), 187–208 | MR | Zbl

[17] T. Hoffmann, “Discrete CMC surfaces and discrete holomorphic maps”, Discrete Integrable Geometry and Physics, eds. A. I. Bobenko, R. Seiler, Oxford Univ. Press, Oxford, 1999, 97–112 | MR | Zbl

[18] A. S. Fokas, A. R. Its, A. V. Kitaev, Commun. Math. Phys., 142 (1991), 313–344 | DOI | MR | Zbl

[19] F. W. Nijhoff, A. Ramani, B. Grammaticos, Y. Ohta, On discrete Painlevé equations associated with the lattice KdV systems and the Painlevé VI equation, E-print solv-int/9812011 | MR

[20] A. R. Its, V. Y. Novokshenov, The Isomonodromic Deformation Method in the Theory of Painlevé Equations, Lect. Notes Math., 1191, Springer, Berlin, 1986 | DOI | MR