Discrete $Z^{\gamma}$: Embedded Circle Patterns with the Square Grid Combinatorics and Discrete Painlev\'e Equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 1, pp. 5-17

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a discrete analogue of the holomorphic map $z^{\gamma}$. It is given by Schramm's circle pattern with the square grid combinatorics. We show that the corresponding circle patterns are embedded and described by special separatrix solutions of discrete Painlevé equations. We establish global properties of these solutions and of the discrete $z^{\gamma}$.
Keywords: circle patterns, discrete Painlevé equation.
Mots-clés : discrete conformal map
@article{TMF_2003_134_1_a1,
     author = {S. I. Agafonov},
     title = {Discrete $Z^{\gamma}$: {Embedded} {Circle} {Patterns} with the {Square} {Grid} {Combinatorics} and {Discrete} {Painlev\'e} {Equations}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {5--17},
     publisher = {mathdoc},
     volume = {134},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a1/}
}
TY  - JOUR
AU  - S. I. Agafonov
TI  - Discrete $Z^{\gamma}$: Embedded Circle Patterns with the Square Grid Combinatorics and Discrete Painlev\'e Equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 5
EP  - 17
VL  - 134
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a1/
LA  - ru
ID  - TMF_2003_134_1_a1
ER  - 
%0 Journal Article
%A S. I. Agafonov
%T Discrete $Z^{\gamma}$: Embedded Circle Patterns with the Square Grid Combinatorics and Discrete Painlev\'e Equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 5-17
%V 134
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a1/
%G ru
%F TMF_2003_134_1_a1
S. I. Agafonov. Discrete $Z^{\gamma}$: Embedded Circle Patterns with the Square Grid Combinatorics and Discrete Painlev\'e Equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 1, pp. 5-17. http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a1/