Asymptotic Solution of the Autoresonance Problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 3, pp. 429-438
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the problem of forced oscillations near a stable equilibrium of a two-dimensional nonlinear Hamiltonian system of equations. A given exciting force is represented as rapid oscillations with a small amplitude and a slowly varying frequency. We study the conditions under which such a perturbation makes the phase trajectory of the system recede from the original equilibrium point to a distance of the order of unity. To study the problem, we construct asymptotic solutions using a small amplitude parameter. We present the solution for not-too-small values of time outside the original boundary layer.
Keywords:
nonlinear oscillations, resonance, asymptotic approximation, averaging.
@article{TMF_2002_133_3_a8, author = {L. A. Kalyakin}, title = {Asymptotic {Solution} of the {Autoresonance} {Problem}}, journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika}, pages = {429--438}, publisher = {mathdoc}, volume = {133}, number = {3}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_3_a8/} }
L. A. Kalyakin. Asymptotic Solution of the Autoresonance Problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 3, pp. 429-438. http://geodesic.mathdoc.fr/item/TMF_2002_133_3_a8/