Asymptotic Solution of the Autoresonance Problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 3, pp. 429-438 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the problem of forced oscillations near a stable equilibrium of a two-dimensional nonlinear Hamiltonian system of equations. A given exciting force is represented as rapid oscillations with a small amplitude and a slowly varying frequency. We study the conditions under which such a perturbation makes the phase trajectory of the system recede from the original equilibrium point to a distance of the order of unity. To study the problem, we construct asymptotic solutions using a small amplitude parameter. We present the solution for not-too-small values of time outside the original boundary layer.
Keywords: nonlinear oscillations, resonance, asymptotic approximation, averaging.
@article{TMF_2002_133_3_a8,
     author = {L. A. Kalyakin},
     title = {Asymptotic {Solution} of the {Autoresonance} {Problem}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {429--438},
     year = {2002},
     volume = {133},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_3_a8/}
}
TY  - JOUR
AU  - L. A. Kalyakin
TI  - Asymptotic Solution of the Autoresonance Problem
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 429
EP  - 438
VL  - 133
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_133_3_a8/
LA  - ru
ID  - TMF_2002_133_3_a8
ER  - 
%0 Journal Article
%A L. A. Kalyakin
%T Asymptotic Solution of the Autoresonance Problem
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 429-438
%V 133
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2002_133_3_a8/
%G ru
%F TMF_2002_133_3_a8
L. A. Kalyakin. Asymptotic Solution of the Autoresonance Problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 3, pp. 429-438. http://geodesic.mathdoc.fr/item/TMF_2002_133_3_a8/

[1] N. M. Krylov, N. N. Bogolyubov, Issledovanie prodolnoi ustoichivosti aeroplana, Gos. aviats. i avtotrakt. izd-vo, M.–L., 1932; Г. Е. Кузмак, ПММ, 23:3 (1959), 515 ; F. J. Bourland, R. Haberman, SIAM J. Appl. Math., 48 (1988), 737 | MR | Zbl | DOI | MR | Zbl

[2] N. N. Moiseev, Asimptoticheskie metody v nelineinoi mekhanike, Nauka, M., 1981 | MR

[3] G. M. Zaslavskii, R. Z. Sagdeev, Vvedenie v nelineinuyu fiziku. Ot mayatnika do turbulentnosti i khaosa, Nauka, M., 1988 | MR

[4] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR

[5] V. I. Veksler, DAN SSSR, 43 (1944), 346; 393; А. А. Андронов, Г. А. Горелик, ДАН СССР, 49 (1945), 664; E. M. MacMillan, Phys. Rev., 68 (1945), 143 | DOI

[6] K. S. Golovanivsky, Phys. Scripta, 22 (1980), 126 ; К. С. Голованивский, Физика плазмы, 11:3 (1985), 295 | DOI

[7] I. Aranson, B. Meersoh, T. Tajima, Phys. Rev. A, 45 (1992), 7505 ; L. Friedland, Phys. Rev. E, 55 (1997), 1929 ; 61 (2000), 3732 ; L. Friedland, A. G. Shagalov, Phys. Rev. Lett., 81 (1998), 4307 | DOI | DOI | DOI | DOI

[8] L. A. Kalyakin, Dokl. RAN, 378 (2001), 594 | MR | Zbl

[9] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR