Finite-Band Potentials with Trigonal Curves
Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 3, pp. 398-404 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct Dubrovin equations and trace formulas for finite-band operators with trigonal curves and present some examples.
Keywords: finite-band potentials, spectral problems, trace formulas.
@article{TMF_2002_133_3_a5,
     author = {Yu. V. Brezhnev},
     title = {Finite-Band {Potentials} with {Trigonal} {Curves}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {398--404},
     year = {2002},
     volume = {133},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_3_a5/}
}
TY  - JOUR
AU  - Yu. V. Brezhnev
TI  - Finite-Band Potentials with Trigonal Curves
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 398
EP  - 404
VL  - 133
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_133_3_a5/
LA  - ru
ID  - TMF_2002_133_3_a5
ER  - 
%0 Journal Article
%A Yu. V. Brezhnev
%T Finite-Band Potentials with Trigonal Curves
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 398-404
%V 133
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2002_133_3_a5/
%G ru
%F TMF_2002_133_3_a5
Yu. V. Brezhnev. Finite-Band Potentials with Trigonal Curves. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 3, pp. 398-404. http://geodesic.mathdoc.fr/item/TMF_2002_133_3_a5/

[1] S. P. Novikov, Funkts. analiz i ego prilozh., 8:3 (1974), 54–66 | MR | Zbl

[2] A. R. Its, V. B. Matveev, Funkts. analiz i ego prilozh., 9:1 (1975), 69–70 | MR | Zbl

[3] I. M. Krichever, Funkts. analiz i ego prilozh., 10:2 (1976), 75–76 | MR | Zbl

[4] B. A. Dubrovin, Funkts. analiz i ego prilozh., 11:4 (1977), 28–41 | MR | Zbl

[5] B. A. Dubrovin, Funkts. analiz i ego prilozh., 9:3 (1975), 41–51 | MR | Zbl

[6] B. A. Dubrovin, V. B. Matveev, S. P. Novikov, UMN, 31:1 (1976), 55–136 | MR | Zbl

[7] B. A. Dubrovin, S. M. Natanzon, Funkts. analiz i ego prilozh., 16:1 (1982), 27–43 | MR | Zbl

[8] S. P. Novikov, Zap. nauchn. semin. LOMI, 133, 1984, 177–196 | MR | Zbl

[9] A. O. Smirnov, Matem. zametki, 58:1 (1995), 86–97 | MR | Zbl

[10] F. Gesztesy, R. Weikard, Bull. Amer. Math. Soc., New Ser., 35:4 (1998), 271–317 | DOI | MR | Zbl

[11] F. Gesztesy, H. Holden, Hierarchies of Soliton Equations and their Algebro-Geometric Solutions, 1, Cambridge Studies in Advanced Mathematics, Cambridge Univ. Press, Cambridge, 2002 (to appear) | MR

[12] F. Gesztesy, R. Ratnaseelan, Rev. Math. Phys., 10 (1998), 345–391 | DOI | MR | Zbl

[13] D. V. Chudnovsky, J. Math. Phys., 20:12 (1979), 2416–2422 | DOI | MR | Zbl

[14] Yu. V. Brezhnev, Rep. Math. Phys., 48:1/2 (2001), 39–46 | DOI | MR | Zbl

[15] M. Blaszak, Multi-Hamiltonian Theory of Dynamical Systems, Springer, Berlin, 1998 | MR | Zbl

[16] I. M. Gelfand, L. A. Dikii, Funkts. analiz i ego prilozh., 13:1 (1979), 8–20 | MR | Zbl

[17] V. Z. Enolskii, DAN SSSR, 278:2 (1984), 305–308 | MR

[18] M. Blaszak, Rep. Math. Phys., 46:1/2 (2000), 35–46 | DOI | MR | Zbl

[19] N. V. Ustinov, Yu. V. Brezhnev, UMN, 57:1 (2002), 167–168 ; E-print nlin.SI/0012039 | DOI | MR | Zbl

[20] Yu. V. Brezhnev, UMN, 57:2 (2002), 191–192 ; E-print nlin.SI/0106024 | DOI | MR | Zbl