Self-Similar Parabolic Optical Solitary Waves
Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 3, pp. 386-397 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study solutions of the nonlinear Schrödinger equation (NLSE) with gain, describing optical pulse propagation in an amplifying medium. We construct a semiclassical self-similar solution with a parabolic temporal variation that corresponds to the energy-containing core of the asymptotically propagating pulse in the amplifying medium. We match the self-similar core through Painlevé functions to the solution of the linearized equation that corresponds to the low-amplitude tails of the pulse. The analytic solution accurately reproduces the numerically calculated solution of the NLSE.
Keywords: nonlinear optics, self-similarity, generation of parabolic pulses.
@article{TMF_2002_133_3_a4,
     author = {S. Boscolo and S. K. Turitsyn and V. Yu. Novokshenov and J. Nijhof},
     title = {Self-Similar {Parabolic} {Optical} {Solitary} {Waves}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {386--397},
     year = {2002},
     volume = {133},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_3_a4/}
}
TY  - JOUR
AU  - S. Boscolo
AU  - S. K. Turitsyn
AU  - V. Yu. Novokshenov
AU  - J. Nijhof
TI  - Self-Similar Parabolic Optical Solitary Waves
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 386
EP  - 397
VL  - 133
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_133_3_a4/
LA  - ru
ID  - TMF_2002_133_3_a4
ER  - 
%0 Journal Article
%A S. Boscolo
%A S. K. Turitsyn
%A V. Yu. Novokshenov
%A J. Nijhof
%T Self-Similar Parabolic Optical Solitary Waves
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 386-397
%V 133
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2002_133_3_a4/
%G ru
%F TMF_2002_133_3_a4
S. Boscolo; S. K. Turitsyn; V. Yu. Novokshenov; J. Nijhof. Self-Similar Parabolic Optical Solitary Waves. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 3, pp. 386-397. http://geodesic.mathdoc.fr/item/TMF_2002_133_3_a4/

[1] G. I. Barenblatt, Scaling, Self-Similarity, and Intermediate Asymptotics, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl

[2] V. I. Kruglov, A. C. Peacock, J. M. Dudley, J. D. Harvey, Opt. Lett., 25 (2000), 1753 | DOI

[3] M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, J. D. Harvey, Phys. Rev. Lett., 84 (2000), 6010 | DOI

[4] D. Anderson, M. Desaix, M. Karlsson, M. Lisak, M. L. Quiroga-Teixeiro, J. Opt. Soc. Am. B, 10 (1993), 1185 | DOI

[5] V. E. Zakharov, E. A. Kuznetsov, ZhETF, 91 (1986), 1310

[6] N. Joshi, M. D. Kruskal, Phys. Lett. A, 130 (1988), 129 ; P. A. Clarkson, J. B. McLeod, Arch. Rat. Mech. Anal., 103 (1988), 97 ; N. Joshi, “Asymptotic studies of the Painlevé equations”, The Painlevé Property, One Century Later, CRM Series in Mathematical Physics, ed. R. Conte, Springer-Verlag, New York, 1999, 181–227 | DOI | MR | DOI | MR | Zbl | MR

[7] A. R. Its, V. Yu. Novokshenov, The Isomonodromic Deformation Method in the Theory of Painlevé Equations, Lecture Notes in Math., 1191, Springer, Berlin, 1986 ; S. P. Hastings, J. B. McLeod, Arch. Rat. Mech. Anal., 73 (1980), 31 | DOI | MR | DOI | MR | Zbl

[8] E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications, Wiley, New York, 1994

[9] O. A. Ladyzhenskaja, V. A. Solonnikov, N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, Transl. of Math. Monographs, 23, AMS, Providence, RI, 1968 | MR