Self-Similar Parabolic Optical Solitary Waves
Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 3, pp. 386-397
Voir la notice de l'article provenant de la source Math-Net.Ru
We study solutions of the nonlinear Schrödinger equation (NLSE) with gain, describing optical pulse propagation in an amplifying medium. We construct a semiclassical self-similar solution with a parabolic temporal variation that corresponds to the energy-containing core of the asymptotically propagating pulse in the amplifying medium. We match the self-similar core through Painlevé functions to the solution of the linearized equation that corresponds to the low-amplitude tails of the pulse. The analytic solution accurately reproduces the numerically calculated solution of the NLSE.
Keywords:
nonlinear optics, self-similarity, generation of parabolic pulses.
@article{TMF_2002_133_3_a4,
author = {S. Boscolo and S. K. Turitsyn and V. Yu. Novokshenov and J. Nijhof},
title = {Self-Similar {Parabolic} {Optical} {Solitary} {Waves}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {386--397},
publisher = {mathdoc},
volume = {133},
number = {3},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_3_a4/}
}
TY - JOUR AU - S. Boscolo AU - S. K. Turitsyn AU - V. Yu. Novokshenov AU - J. Nijhof TI - Self-Similar Parabolic Optical Solitary Waves JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2002 SP - 386 EP - 397 VL - 133 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2002_133_3_a4/ LA - ru ID - TMF_2002_133_3_a4 ER -
S. Boscolo; S. K. Turitsyn; V. Yu. Novokshenov; J. Nijhof. Self-Similar Parabolic Optical Solitary Waves. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 3, pp. 386-397. http://geodesic.mathdoc.fr/item/TMF_2002_133_3_a4/