Commutative Poisson Subalgebras for Sklyanin Brackets and Deformations of Some Known Integrable Models
Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 3, pp. 485-500 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct hierarchies of commutative Poisson subalgebras for Sklyanin brackets. Each of the subalgebras is generated by a complete set of integrals in involution. Some new integrable systems and schemes for separation of variables for them are elaborated using various well-known representations of the brackets. The constructed models include deformations for the Goryachev–Chaplygin top, the Toda chain, and the Heisenberg model.
Keywords: finite-dimensional integrable systems, Lax representation, separation of variables.
Mots-clés : $r$-matrix algebras
@article{TMF_2002_133_3_a12,
     author = {V. V. Sokolov and A. V. Tsiganov},
     title = {Commutative {Poisson} {Subalgebras} for {Sklyanin} {Brackets} and {Deformations} of {Some} {Known} {Integrable} {Models}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {485--500},
     year = {2002},
     volume = {133},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_3_a12/}
}
TY  - JOUR
AU  - V. V. Sokolov
AU  - A. V. Tsiganov
TI  - Commutative Poisson Subalgebras for Sklyanin Brackets and Deformations of Some Known Integrable Models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 485
EP  - 500
VL  - 133
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_133_3_a12/
LA  - ru
ID  - TMF_2002_133_3_a12
ER  - 
%0 Journal Article
%A V. V. Sokolov
%A A. V. Tsiganov
%T Commutative Poisson Subalgebras for Sklyanin Brackets and Deformations of Some Known Integrable Models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 485-500
%V 133
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2002_133_3_a12/
%G ru
%F TMF_2002_133_3_a12
V. V. Sokolov; A. V. Tsiganov. Commutative Poisson Subalgebras for Sklyanin Brackets and Deformations of Some Known Integrable Models. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 3, pp. 485-500. http://geodesic.mathdoc.fr/item/TMF_2002_133_3_a12/

[1] E. K. Sklyanin, Zap. nauchn. sem. LOMI, 133, 1984, 236 | MR | Zbl

[2] E. K. Sklyanin, Progr. Theor. Phys., 118 (1995), 35 | DOI | MR | Zbl

[3] V. B. Kuznetsov, A. V. Tsiganov, J. Phys., 22 (1989), L73 | DOI | MR | Zbl

[4] V. V. Sokolov, A. V. Tsyganov, TMF, 131:1 (2002), 118 | DOI | MR | Zbl

[5] V. I. Inozemtsev, Commun. Math. Phys., 121 (1989), 629 | DOI | MR | Zbl

[6] E. K. Sklyanin, J. Phys. A, 21 (1988), 2375 | DOI | MR | Zbl

[7] P. Stäckel, Über die integration der Hamilton–Jacobischen differentialgeichung mittels separation der variabeln, Habilitationschrift, Halle, 1891; L. A. Pars, Amer. Math. Monthly, 56 (1949), 394 | DOI | MR

[8] A. V. Tsiganov, J. Math. Phys., 38 (1997), 196 | DOI | MR | Zbl

[9] E. K. Sklyanin, “The quantum Toda chain”, Nonlinear Equations in Classical and Quantum Field Theory, Proc. Semin. Meudon, Paris, 1983/1984, Lect. Notes Phys., 226, Springer, Berlin, 1985, 196 | DOI | MR

[10] A. V. Tsiganov, J. Phys. A, 31 (1998), 8049 | DOI | MR | Zbl