Bi-Hamiltonian Aspects of the Separability of the Neumann System
Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 3, pp. 475-484 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Neumann system on the two-dimensional sphere is used as a tool to convey some ideas on the bi-Hamiltonian standpoint on separation of variables. We show that from this standpoint, its separation coordinates and its integrals of motion can be found systematically.
Keywords: integrable systems, Neumann system, separation of variables, bi-Hamiltonian geometry.
@article{TMF_2002_133_3_a11,
     author = {M. Pedroni},
     title = {Bi-Hamiltonian {Aspects} of the {Separability} of the {Neumann} {System}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {475--484},
     year = {2002},
     volume = {133},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_3_a11/}
}
TY  - JOUR
AU  - M. Pedroni
TI  - Bi-Hamiltonian Aspects of the Separability of the Neumann System
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 475
EP  - 484
VL  - 133
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_133_3_a11/
LA  - ru
ID  - TMF_2002_133_3_a11
ER  - 
%0 Journal Article
%A M. Pedroni
%T Bi-Hamiltonian Aspects of the Separability of the Neumann System
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 475-484
%V 133
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2002_133_3_a11/
%G ru
%F TMF_2002_133_3_a11
M. Pedroni. Bi-Hamiltonian Aspects of the Separability of the Neumann System. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 3, pp. 475-484. http://geodesic.mathdoc.fr/item/TMF_2002_133_3_a11/

[1] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Integrable systems, I”, Dynamical Systems IV: Symplectic Geometry and Its Applications, Encycl. Math. Sci., 4, eds. V. I. Arnold, S. P. Novikov, Springer, Berlin, 1990, 173–280 ; B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Intergiruemye sistemy, I”, Dinamicheskie sistemy–4, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 4, eds. R. V. Gamkrelidze, VINITI, M., 1985, 179–277 | DOI | MR | MR

[2] M. R. Adams, J. Harnad, J. Hurtubise, Commun. Math. Phys., 155 (1993), 385–413 ; J. C. Hurtubise, Duke Math. J., 83 (1996), 19–50 | DOI | MR | Zbl | DOI | MR | Zbl

[3] S. Benenti, “Orthogonal separable dynamical systems”, Differential Geometry and Its Applications, Proc. of the 5th Int. Conf. (Opava, Czechoslovakia, August 24–28, 1992), Math. Publ. Opava, 1, eds. O. Kowalski, D. Krupka, Open Education and Sciences, Silesian Univ., Opava, 1993, 163–184 | MR | Zbl

[4] E. G. Kalnins, Separation of Variables for Riemannian Spaces of Constant Curvature, Longman Scientific Technical, Harlow; Wiley, New York, 1986 ; K. Kiyohara, Mem. Am. Math. Soc., 619, 1997, 1–143 ; N. M. J. Woodhouse, Commun. Math. Phys., 44 (1975), 9–38 | MR | Zbl | MR | DOI | MR | Zbl

[5] E. K. Sklyanin, “Bäcklund transformations and Baxter's $Q$-operator”, Integrable Systems: from Classical to Quantum, CRM Proc. Lect. Notes, 26, eds. J. Harnad, G. Sabidussi, P. Winternitz, Am. Math. Soc., Providence, RI, 2000, 227–250 ; V. Kuznetsov, P. Vanhaecke, Bäcklund transformations for finite-dimensional integrable systems: a geometric approach, E-print nlin.SI/0004003 | DOI | MR | Zbl | MR

[6] A. Gorsky, N. Nekrasov, V. Rubtsov, Commun. Math. Phys., 222 (2001), 299–318 | DOI | MR | Zbl

[7] G. Falqui, M. Pedroni, Separation of variables for bi-Hamiltonian systems, E-print nlin.SI/0204029 | MR

[8] F. Magri, G. Falqui, M. Pedroni, The method of Poisson pairs in the theory of nonlinear PDEs, E-print nlin.SI/0002009 | MR

[9] G. Falqui, F. Magri, M. Pedroni, J. P. Zubelli, Regul. Chaotic Dyn., 5 (2000), 33–52 | DOI | MR | Zbl

[10] G. Falqui, F. Magri, M. Pedroni, J. Nonlinear Math. Phys., 8 (2001), 118–127 | DOI | MR | Zbl

[11] J. Moser, “Various aspects of integrable Hamiltonian systems”, Dynamical Systems, C.I.M.E. Summer School (Bressanone, 1978), Progr. Math., 8, eds. J. M. Guckenheimer et al., Birkhäuser, Boston, Mass., 1980, 233–289 ; T. S. Ratiu, Trans. Am. Math. Soc., 264 (1981), 321–329 ; M. Audin, Regul. Chaotic Dyn., 5 (2000), 67–88 ; J. Harnad, “Loop groups, $R$-matrices and separation of variables”, Integrable Systems: from Classical to Quantum, CRM Proc. Lect. Notes, 26, eds. J. Harnad, G. Sabidussi, P. Winternitz, Am. Math. Soc., Providence, RI, 2000, 21–54 | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR

[12] A. Ibort, F. Magri, G. Marmo, J. Geom. Phys., 33 (2000), 210–228 | DOI | MR | Zbl

[13] A. Nijenhuis, Nederl. Akad. Wetensch. Proc. Ser. A, 54 ; Indagationes Math., 13 (1951), 200–212 | Zbl | DOI | MR

[14] K. Yano, S. Ishihara, Tangent and Cotangent Bundles: Differential Geometry, Marcel Dekker, New York, 1973 ; M. Crampin, F. Cantrijn, W. Sarlet, J. Geom. Phys., 4 (1987), 469–492 | MR | Zbl | DOI | MR | Zbl

[15] N. J. Hitchin, Asian J. Math., 3 (1999), 77–91 | DOI | MR | Zbl

[16] C. Morosi, G. Tondo, J. Phys. A, 30 (1997), 2799–2806 | DOI | MR | Zbl

[17] M. Błaszak, Phys. Lett. A, 243 (1998), 25–32 | DOI | MR

[18] G. Falki, F. Magri, G. Tondo, TMF, 122:2 (2000), 212–230 ; Yunbo Zeng, Wen-Xiu Ma, J. Math. Phys., 40 (1999), 4452–4473 | DOI | MR | DOI | MR | Zbl

[19] R. Brouzet, R. Caboz, J. Rabenivo, V. Ravoson, J. Phys. A, 29 (1996), 2069–2076 | DOI | MR | Zbl

[20] M. Crampin, W. Sarlet, G. Thompson, J. Phys. A, 33 (2000), 8755–8770 | DOI | MR | Zbl

[21] S. Rauch-Wojciechowski, Phys. Lett. A, 160 (1991), 149–154 | DOI | MR