Integrable Quasilinear Equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 233-246
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We develop a classification scheme for integrable third-order scalar evolution equations using the symmetry approach to integrability. We use this scheme to study quasilinear equations of a particular type and prove that several equations that were suspected to be integrable can be reduced to the well-known Korteweg–de Vries and Krichever–Novikov equations via a Miura-type differential substitution.
Keywords: classification of integrable differential equations, formal symmetry approach, differential substitutions.
@article{TMF_2002_133_2_a8,
     author = {R. Hernandez Heredero},
     title = {Integrable {Quasilinear} {Equations}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {233--246},
     year = {2002},
     volume = {133},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a8/}
}
TY  - JOUR
AU  - R. Hernandez Heredero
TI  - Integrable Quasilinear Equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 233
EP  - 246
VL  - 133
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a8/
LA  - ru
ID  - TMF_2002_133_2_a8
ER  - 
%0 Journal Article
%A R. Hernandez Heredero
%T Integrable Quasilinear Equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 233-246
%V 133
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a8/
%G ru
%F TMF_2002_133_2_a8
R. Hernandez Heredero. Integrable Quasilinear Equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 233-246. http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a8/

[1] L. Abellanas, A. Galindo, Phys. Lett. A, 107:4 (1985), 159–160 ; F. Calogero, A. Degasperis, J. Math. Phys., 22 (1981), 23–31 ; A. S. Fokas, J. Math. Phys., 21:6 (1980), 1318–1325 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[2] R. Hernández Heredero, V. V. Sokolov, S. I. Svinolupov, J. Phys. A, 27 (1994), 4557–4568 | DOI | MR | Zbl

[3] N. Kh. Ibragimov, A. B. Shabat, Funkts. analiz i ego prilozh., 14:1 (1980), 25–36 | MR | Zbl

[4] A. V. Mikhailov, A. B. Shabat, V. V. Sokolov, “The symmetry approach to classification of integrable equations”, What is Integrability?, ed. V. Zakharov, Springer, Berlin, 1991, 115–184 | DOI | MR | Zbl

[5] S. I. Svinolupov, V. V. Sokolov, Funkts. analiz i ego prilozh., 16:4 (1982), 86–87 | MR | Zbl

[6] H. D. Wahlquist, F. B. Estabrook, J. Math. Phys., 16 (1975), 1–7 | DOI | MR | Zbl

[7] S. I. Svinolupov, V. V. Sokolov, UMN, 47:3 (1992), 115–146 | MR | Zbl

[8] H. H. Chen, Y. C. Lee, C. S. Liu, Physica Scripta, 20:3/4 (1979), 490–492 | DOI | MR | Zbl

[9] N. Kh. Ibragimov, A. B. Shabat, Funkts. analiz i ego prilozh., 14:4 (1980), 79–80 | MR | Zbl

[10] V. V. Sokolov, A. B. Shabat, Sov. Math. Phys. Rev., 4 (1984), 221–280 | Zbl

[11] F. Kh. Mukminov, V. V. Sokolov, Matem. sb., 133(175):3 (1987), 392–414 | Zbl

[12] V. V. Sokolov, UMN, 43:5 (1988), 133–163 | MR | Zbl

[13] R. Hernández Heredero, V. V. Sokolov, S. I. Svinolupov, “Why are there so many integrable evolution equations of third order?”, Proc. NEEDS'94, eds. V. G. Manakov, A. R. Bishop, D. D. Holm, World Scientific, Los Álamos, 1995, 42–53 | MR | Zbl