Integrable Quasilinear Equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 233-246
Voir la notice de l'article provenant de la source Math-Net.Ru
We develop a classification scheme for integrable third-order scalar evolution equations using the symmetry approach to integrability. We use this scheme to study quasilinear equations of a particular type and prove that several equations that were suspected to be integrable can be reduced to the well-known Korteweg–de Vries and Krichever–Novikov equations via a Miura-type differential substitution.
Keywords:
classification of integrable differential equations, formal symmetry approach, differential substitutions.
@article{TMF_2002_133_2_a8,
author = {R. Hernandez Heredero},
title = {Integrable {Quasilinear} {Equations}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {233--246},
publisher = {mathdoc},
volume = {133},
number = {2},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a8/}
}
R. Hernandez Heredero. Integrable Quasilinear Equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 233-246. http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a8/