Zakharov--Shabat Spectral Transform on the Half-Line
Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 218-232
Voir la notice de l'article provenant de la source Math-Net.Ru
The Zakharov–Shabat inverse spectral problem is constructed for a potential with support on the half-line and with a boundary value at the origin. This prescribed value is shown to produce a Jost solution with an essential singularity at large values of the spectral parameter; this requires particular attention when solving the related Hilbert boundary value problem. The method is then used to illustrate the sine-Gordon equation (in the light cone) and is discussed using a singular limit of the stimulated Raman scattering equations.
Keywords:
nonlinear evolution equations, inverse scattering transform, boundary value problem, Riemann–Hilbert problem
Mots-clés : sine-Gordon equation.
Mots-clés : sine-Gordon equation.
@article{TMF_2002_133_2_a7,
author = {F. Geniet and G. Leon},
title = {Zakharov--Shabat {Spectral} {Transform} on the {Half-Line}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {218--232},
publisher = {mathdoc},
volume = {133},
number = {2},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a7/}
}
F. Geniet; G. Leon. Zakharov--Shabat Spectral Transform on the Half-Line. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 218-232. http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a7/