Zakharov–Shabat Spectral Transform on the Half-Line
Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 218-232 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Zakharov–Shabat inverse spectral problem is constructed for a potential with support on the half-line and with a boundary value at the origin. This prescribed value is shown to produce a Jost solution with an essential singularity at large values of the spectral parameter; this requires particular attention when solving the related Hilbert boundary value problem. The method is then used to illustrate the sine-Gordon equation (in the light cone) and is discussed using a singular limit of the stimulated Raman scattering equations.
Keywords: nonlinear evolution equations, inverse scattering transform, boundary value problem, Riemann–Hilbert problem
Mots-clés : sine-Gordon equation.
@article{TMF_2002_133_2_a7,
     author = {F. Geniet and G. Leon},
     title = {Zakharov{\textendash}Shabat {Spectral} {Transform} on the {Half-Line}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {218--232},
     year = {2002},
     volume = {133},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a7/}
}
TY  - JOUR
AU  - F. Geniet
AU  - G. Leon
TI  - Zakharov–Shabat Spectral Transform on the Half-Line
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 218
EP  - 232
VL  - 133
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a7/
LA  - ru
ID  - TMF_2002_133_2_a7
ER  - 
%0 Journal Article
%A F. Geniet
%A G. Leon
%T Zakharov–Shabat Spectral Transform on the Half-Line
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 218-232
%V 133
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a7/
%G ru
%F TMF_2002_133_2_a7
F. Geniet; G. Leon. Zakharov–Shabat Spectral Transform on the Half-Line. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 218-232. http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a7/

[1] F. Y. F. Chu, A. C. Scott, Phys. Rev. A, 12 (1975), 2060 | DOI

[2] J. Leon, A. V. Mikhailov, Phys. Lett. A, 253 (1999), 33 | DOI

[3] M. Boiti, J.-G. Caputo, J. Leon, F. Pempinelli, Inverse Problems, 16 (2000), 303 | DOI | Zbl

[4] V. E. Zakharov, A. B. Shabat, ZhETF, 61 (1971), 118

[5] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, Stud. Appl. Math., 53 (1974), 249 | DOI | MR | Zbl

[6] A. S. Fokas, A. R. Its, Phys. Rev. Lett., 68 (1992), 3117 ; SIAM J. Math. Anal., 27 (1996), 738 | DOI | MR | Zbl | DOI | MR | Zbl

[7] P. C. Sabatier, J. Math. Phys., 41 (2000), 414 | DOI | MR | Zbl

[8] A. S. Fokas, Proc. Roy. Soc. London. A, 453 (1997), 1411 ; J. Math. Phys., 41 (2000), 4188 | DOI | MR | Zbl | DOI | MR | Zbl

[9] A. S. Fokas, B. Pelloni, Proc. Roy. Soc. London. A, 454 (1998), 645 ; Phys. Rev. Lett., 84 (2000), 4785 | DOI | MR | Zbl | DOI | MR

[10] B. Pelloni, Comm. Appl. Anal., 6 (2002), 179 | MR | Zbl

[11] J. Leon, A. Spire, J. Phys. A, 34 (2001), 7359 | DOI | MR | Zbl

[12] B. M. Levitan, I. S. Sargsyan, Vvedenie v spektralnuyu teoriyu. Samosopryazhennye obyknovennye differentsialnye operatory, Nauka, M., 1970 ; I. D. Iliev, E. Kh. Khristov, K. P. Kirchev, Spectral methods in soliton equations, Pitman monographs, Longman, Harlow, UK, 1994 | MR | Zbl | MR | Zbl

[13] N. I. Muskhelishvili, Singulyarnye integralnye uravneniya. Granichnye zadachi teorii funktsii i nekotorye ikh prilozheniya k matematicheskoi fizike, Nauka, M., 1970 | MR | Zbl

[14] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, Phys. Rev. Lett., 30 (1973), 1262 ; Л. А. Тахтаджян, Л. Д. Фаддеев, ТМФ, 21:2 (1974), 160 | DOI | MR

[15] J. Leon, J. Math. Phys., 35 (1994), 3054 ; Phys. Rev. A, 47 (1993), 3264 ; Phys. Lett. A, 170 (1992), 283 | DOI | MR | DOI | DOI | MR