Integrable Systems and Rank-One Conditions for Rectangular Matrices
Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 211-217

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a determinantal formula for tau functions of the KP hierarchy in terms of rectangular constant matrices $A$, $B$, and $C$ satisfying a rank-one condition. This result is shown to generalize and unify many previous results of different authors on constructions of tau functions for differential and difference integrable systems from square matrices satisfying rank-one conditions. In particular, its explicit special cases include Wilson's formula for tau functions of the rational KP solutions in terms of Calogero–Moser Lax matrices and our previous formula for the KP tau functions in terms of almost-intertwining matrices.
Keywords: KP hierarchies, rank-one conditions.
Mots-clés : solitions, Calogero–Moser matrices
@article{TMF_2002_133_2_a6,
     author = {M. M. Gekhtman and A. Kasman},
     title = {Integrable {Systems} and {Rank-One} {Conditions} for {Rectangular} {Matrices}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {211--217},
     publisher = {mathdoc},
     volume = {133},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a6/}
}
TY  - JOUR
AU  - M. M. Gekhtman
AU  - A. Kasman
TI  - Integrable Systems and Rank-One Conditions for Rectangular Matrices
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 211
EP  - 217
VL  - 133
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a6/
LA  - ru
ID  - TMF_2002_133_2_a6
ER  - 
%0 Journal Article
%A M. M. Gekhtman
%A A. Kasman
%T Integrable Systems and Rank-One Conditions for Rectangular Matrices
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 211-217
%V 133
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a6/
%G ru
%F TMF_2002_133_2_a6
M. M. Gekhtman; A. Kasman. Integrable Systems and Rank-One Conditions for Rectangular Matrices. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 211-217. http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a6/