Separation of Variables in a Nonlinear Wave Equation with a Variable Wave Speed
Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 202-210 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We develop a generalized conditional symmetry approach for the functional separation of variables in a nonlinear wave equation with a nonlinear wave speed. We use it to obtain a number of new $(1+1)$-dimensional nonlinear wave equations with variable wave speeds admitting a functionally separable solution. As a consequence, we obtain exact solutions of the resulting equations.
Keywords: Lie symmetries, generalized symmetries, nonlinear equations.
Mots-clés : diffusion equations
@article{TMF_2002_133_2_a5,
     author = {P. G. Estevez and C. Qu},
     title = {Separation of {Variables} in {a~Nonlinear} {Wave} {Equation} with {a~Variable} {Wave} {Speed}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {202--210},
     year = {2002},
     volume = {133},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a5/}
}
TY  - JOUR
AU  - P. G. Estevez
AU  - C. Qu
TI  - Separation of Variables in a Nonlinear Wave Equation with a Variable Wave Speed
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 202
EP  - 210
VL  - 133
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a5/
LA  - ru
ID  - TMF_2002_133_2_a5
ER  - 
%0 Journal Article
%A P. G. Estevez
%A C. Qu
%T Separation of Variables in a Nonlinear Wave Equation with a Variable Wave Speed
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 202-210
%V 133
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a5/
%G ru
%F TMF_2002_133_2_a5
P. G. Estevez; C. Qu. Separation of Variables in a Nonlinear Wave Equation with a Variable Wave Speed. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 202-210. http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a5/

[1] G. W. Bluman, S. Kumei, Symmetries and Differential Equations, Springer, New York, 1989 | MR | Zbl

[2] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl

[3] W. Miller, Symmetry and Separation of Variables, Addison-Wesley, Reading, MA, 1977 | MR | Zbl

[4] G. W. Bluman, J. D. Cole, J. Math. Mech., 18 (1969), 1025 | MR | Zbl

[5] A. S. Fokas, Q. M. Liu, Phys. Rev. Lett., 72 (1994), 3293 | DOI | MR | Zbl

[6] R. Z. Zhdanov, J. Phys. A, 28 (1995), 3841 | DOI | MR | Zbl

[7] C. Z. Qu, Stud. Appl. Math., 99 (1997), 107 | DOI | MR

[8] E. Pucci, G. Saccomandi, Physica D, 139 (2000), 28 | DOI | MR | Zbl

[9] C. Z. Qu, S. L. Zhang, R. C. Liu, Physica D, 144 (2000), 97 | DOI | MR | Zbl

[10] W. Miller, L. A. Rubel, J. Phys. A, 26 (1993), 1901 ; A. M. Grundland, E. Infeld, J. Math. Phys., 33 (1992), 2498 ; R. Z. Zhdanov, J. Phys. A, 27 (1994), L291 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[11] W. F. Ames, R. J. Lohner, E. Adams, Int. J. Nonlinear Mech., 16 (1981), 439 | DOI | MR | Zbl