Initial-Boundary Value Problems for Linear and Soliton PDEs
Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 184-201

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider evolution PDEs for dispersive waves in both linear and nonlinear integrable cases and formulate the associated initial-boundary value problems in the spectral space. We propose a solution method based on eliminating the unknown boundary values by proper restrictions of the functional space and of the spectral variable complex domain. Illustrative examples include the linear Schrödinger equation on compact and semicompact n-dimensional domains and the nonlinear Schrödinger equation on the semiline.
Mots-clés : solitons
Keywords: integrability, boundary conditions.
@article{TMF_2002_133_2_a4,
     author = {A. Degasperis and S. V. Manakov and P. M. Santini},
     title = {Initial-Boundary {Value} {Problems} for {Linear} and {Soliton} {PDEs}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {184--201},
     publisher = {mathdoc},
     volume = {133},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a4/}
}
TY  - JOUR
AU  - A. Degasperis
AU  - S. V. Manakov
AU  - P. M. Santini
TI  - Initial-Boundary Value Problems for Linear and Soliton PDEs
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 184
EP  - 201
VL  - 133
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a4/
LA  - ru
ID  - TMF_2002_133_2_a4
ER  - 
%0 Journal Article
%A A. Degasperis
%A S. V. Manakov
%A P. M. Santini
%T Initial-Boundary Value Problems for Linear and Soliton PDEs
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 184-201
%V 133
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a4/
%G ru
%F TMF_2002_133_2_a4
A. Degasperis; S. V. Manakov; P. M. Santini. Initial-Boundary Value Problems for Linear and Soliton PDEs. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 184-201. http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a4/