Initial-Boundary Value Problems for Linear and Soliton PDEs
Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 184-201 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider evolution PDEs for dispersive waves in both linear and nonlinear integrable cases and formulate the associated initial-boundary value problems in the spectral space. We propose a solution method based on eliminating the unknown boundary values by proper restrictions of the functional space and of the spectral variable complex domain. Illustrative examples include the linear Schrödinger equation on compact and semicompact n-dimensional domains and the nonlinear Schrödinger equation on the semiline.
Mots-clés : solitons
Keywords: integrability, boundary conditions.
@article{TMF_2002_133_2_a4,
     author = {A. Degasperis and S. V. Manakov and P. M. Santini},
     title = {Initial-Boundary {Value} {Problems} for {Linear} and {Soliton} {PDEs}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {184--201},
     year = {2002},
     volume = {133},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a4/}
}
TY  - JOUR
AU  - A. Degasperis
AU  - S. V. Manakov
AU  - P. M. Santini
TI  - Initial-Boundary Value Problems for Linear and Soliton PDEs
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 184
EP  - 201
VL  - 133
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a4/
LA  - ru
ID  - TMF_2002_133_2_a4
ER  - 
%0 Journal Article
%A A. Degasperis
%A S. V. Manakov
%A P. M. Santini
%T Initial-Boundary Value Problems for Linear and Soliton PDEs
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 184-201
%V 133
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a4/
%G ru
%F TMF_2002_133_2_a4
A. Degasperis; S. V. Manakov; P. M. Santini. Initial-Boundary Value Problems for Linear and Soliton PDEs. Teoretičeskaâ i matematičeskaâ fizika, Tome 133 (2002) no. 2, pp. 184-201. http://geodesic.mathdoc.fr/item/TMF_2002_133_2_a4/

[1] F. Mors, G. Feshbakh, Metody teoreticheskoi fiziki, Izd-vo inostr. lit., M., 1958

[2] R. Terras, R. Swanson, J. Math. Phys., 21 (1980), 2140–2153 | DOI | MR

[3] A. S. Fokas, Proc. Roy. Soc. Lond. A, 53 (1997), 1411 | DOI | MR

[4] A. S. Fokas, J. Math. Phys., 41 (2000), 4188 | DOI | MR | Zbl

[5] A. S. Fokas, Proc. Roy. Soc. Lond. A, 457 (2001), 371 | DOI | MR | Zbl

[6] A. S. Fokas, B. Pelloni, Math. Proc. Camb. Phil. Soc., 131 (2001), 521 | MR | Zbl

[7] B. Pelloni, TMF, 133:2 (2002), 327 | DOI | MR

[8] A. Degasperis, S. V. Manakov, P. M. Santini, Initial-boundary value problems for linear PDEs: the analyticity approach, E-print nlin.SI/0210058 | MR

[9] A. S. Fokas, “Inverse scattering transform on the half-line – the nonlinear analogue of the sine transform”, Inverse Problems: An Interdisciplinary Study, ed. P. C. Sabatier, Academic Press, London, 1987, 409 | MR

[10] P. C. Sabatier, J. Math. Phys., 41 (2000), 414 | DOI | MR | Zbl

[11] A. S. Fokas, A. R. Its, L. Y. Sung, The nonlinear Schrödinger equation on the half-line, Preprint, Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl

[12] A. S. Fokas, “Integrable nonlinear evolution equations on the half-line”, Commun. Math. Phys. (to appear) | MR

[13] A. S. Fokas, A. R. Its, Phys. Rev. Lett., 68 (1992), 3117 | DOI | MR | Zbl

[14] M. J. Ablowitz, H. Segur, J. Math. Phys., 16 (1975), 1054 | DOI | MR | Zbl

[15] A. Degasperis, S. V. Manakov, P. M. Santini, Pisma v ZhETF, 74 (2001), 541

[16] I. T. Khabibullin, TMF, 130:1 (2002), 31 | DOI | MR | Zbl

[17] J. Leon, A. V. Mikhailov, Phys. Lett. A, 253 (1999), 33 | DOI

[18] J. Leon, A. Spire, J. Phys. A, 34 (2001), 7359 | DOI | MR | Zbl

[19] M. Dzh. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi, Mir, M., 1987 ; В. Е. Захаров, С. В. Манаков, С. П. Новиков, Л. П. Питаевский, Теория солитонов: Метод обратной задачи, Наука, М., 1980 | MR | MR

[20] A. Nyuell, “Obratnoe preobrazovanie rasseyaniya”, Solitony, eds. R. Bullaf, F. Kodri, Mir, M., 1983, 193

[21] F. Calogero, S. De Lillo, Inverse Problems, 4 (1988), L33–L37 ; J. Math. Phys., 32 (1991), 99 ; M. J. Ablowitz, S. De Lillo, Phys. Lett. A, 156 (1991), 483 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR